Skip to main content

A Morphology-Based Border Noise Removal Method for Camera-Captured Label Images

  • Conference paper
  • First Online:
Camera-Based Document Analysis and Recognition (CBDAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8357))

  • 885 Accesses

Abstract

Printed labels are widely used in our life to track items, especially in logistics management. If item information on a label could be recognized automatically, the efficiency of the logistics would be greatly improved. However, some particular properties of label images make them difficult for off-the-shelf optical character recognition (OCR) system to recognize directly. To prepare the label images for OCR, border noise removal is an important step. With text region only, the resulting image would be easier for OCR to read. In this paper, we propose a simple and effective approach to remove border noise in textile label images. Border noise in those label images is more complex than that in conventional document images. Our solution consists of four parts: label boundary detection, label blank region extraction, holes filling and border noise deletion. The experiment shows that the proposed method yields satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shafait, F., Breuel, T.M.: The effect of border noise on the performance of projection-based page segmentation methods. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 846–851 (2011)

    Article  Google Scholar 

  2. Bukhari, S.S., Shafait, F., Breuel, T.M.: Border noise removal of camera-captured document images using page frame detection. In: Iwamura, M., Shafait, F. (eds.) CBDAR 2011. LNCS, vol. 7139, pp. 126–137. Springer, Heidelberg (2012)

    Google Scholar 

  3. Le, D.X., Thoma, G.R., Wechsler, H.: Automated borders detection and adaptive segmentation for binary document images. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996, vol. 3, pp. 737–741. IEEE (1996)

    Google Scholar 

  4. Fan, K.C., Wang, Y.K., Lay, T.R.: Marginal noise removal of document images. Pattern Recogn. 35(11), 2593–2611 (2002)

    Article  MATH  Google Scholar 

  5. Cinque, L., Levialdi, S., Lombardi, L., Tanimoto, S.: Segmentation of page images having artifacts of photocopying and scanning. Pattern Recogn. 35(5), 1167–1177 (2002)

    Article  MATH  Google Scholar 

  6. Ávila, B.T., Lins, R.D.: Efficient removal of noisy borders from monochromatic documents. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 249–256. Springer, Heidelberg (2004)

    Google Scholar 

  7. Shafait, F., Breuel, T.M.: A simple and effective approach for border noise removal from document images. In: IEEE 13th International Multitopic Conference, 2009, INMIC 2009, pp. 1–5. IEEE (2009)

    Google Scholar 

  8. Shafait, F., van Beusekom, J., Keysers, D., Breuel, T.M.: Document cleanup using page frame detection. Int. J. Doc. Anal. Recogn. (IJDAR) 11(2), 81–96 (2008)

    Article  Google Scholar 

  9. Stamatopoulos, N., Gatos, B., Georgiou, T.: Page frame detection for double page document images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 401–408. ACM (2010)

    Google Scholar 

  10. Stamatopoulos, N., Gatos, B., Kesidis, A.: Automatic borders detection of camera document images. In: 2nd International Workshop on Camera-Based Document Analysis and Recognition, Curitiba, Brazil, pp. 71–78 (2007)

    Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  12. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  13. Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 159–166. ACM (2010)

    Google Scholar 

  14. Su, B., Lu, S., Tan, C.L.: Combination of document image binarization techniques. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 22–26. IEEE (2011)

    Google Scholar 

  15. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image processing Using MATLAB. Gatesmark Publishing, Knoxville (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, M., Li, C., Zhu, W., Lim, A. (2014). A Morphology-Based Border Noise Removal Method for Camera-Captured Label Images. In: Iwamura, M., Shafait, F. (eds) Camera-Based Document Analysis and Recognition. CBDAR 2013. Lecture Notes in Computer Science(), vol 8357. Springer, Cham. https://doi.org/10.1007/978-3-319-05167-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05167-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05166-6

  • Online ISBN: 978-3-319-05167-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics