Skip to main content

Optimization of Modular Neural Networks with the LVQ Algorithm for Classification of Arrhythmias Using Particle Swarm Optimization

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

In this chapter we describe the application of a full model of PSO as an optimization method for modular neural networks with the LVQ algorithm in order to find the optimal parameters of a modular architecture for the classification of arrhythmias. Simulation results show that this modular model optimized with PSO achieves acceptable classification rates for the MIT-BIH arrhythmia database with 15 classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biehl, M., Ghosh, A., Hammer, B.: Learning vector quantization: the dynamics of winner-takes-all algorithms. Neurocomputing 69(7–9), 660–670 (2006)

    Article  Google Scholar 

  2. Blum, C., Merkle, D.: Swarm Intelligence. Introduction and Applications, Part I, pp. 3–101. Springer, Berlin (2008)

    Google Scholar 

  3. Egelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence, pp. 94–105. Wiley, New York (2005)

    Google Scholar 

  4. Fikret, M.: Particle swarm optimization and other metaheuristic methods in hybrid flow shop scheduling problem. Part Swarm Opt, 155–168 (2009)

    Google Scholar 

  5. Hu, Y.H., Palreddy, S., Tompkins, W.: A patient adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans. Biomed. Eng, 891–900 (1997)

    Google Scholar 

  6. Hu, Y.H., Tompkins, W., Urrusti J L., Afonso, V.X.: Applications of ann for ecg signal detection and classification. J. Electrocardiology. 28, 66–73

    Google Scholar 

  7. Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)

    Google Scholar 

  8. Kohonen, T.: Improved versions of learning vector quantization. In: International Joint Conference on Neural Networks, vol. 1, pp. 545–550. San Diego (1990)

    Google Scholar 

  9. Kohonen, T.: Self-organization and associate memory, 3rd edn. Springer, London (1989)

    Book  Google Scholar 

  10. Ciarelli, P M., Krohling, R.A., Oliveira, E.: Particle swarm optimization applied to parameters learning of probabilistic neural networks for classification of economic activities. Part. Swarm Opt. 313–328 (2009)

    Google Scholar 

  11. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  12. Melin, P., Castillo, O.: An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inf. Sci. 177, 1543–1557 (2007)

    Article  Google Scholar 

  13. Mendoza, O., Melin, P., Castillo, O., Licea, G.: Type-2 fuzzy logic for improving training data and response integration in modular neural networks for image recognition. Lect. Notes Artif. Intell. 4529, 604–612 (2007)

    Google Scholar 

  14. Mendoza, O., Melin, P., Castillo, O.: Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. J 9, 1377–1387 (2009)

    Article  Google Scholar 

  15. Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24, 1115–1133 (2009)

    Article  MATH  Google Scholar 

  16. MIT-BIH Arrhythmia Database. PhysioBank, Physiologic Signal Archives for Biomedical Research. http://www.physionet.org/physiobank/database/mitdb/ (2012). Accessed 12 Nov 2012

  17. Nikmam, T., Amiri, B.: An efficient hybrid approach based on pso, aco and k-means for cluster ananlysis. Appl. Soft Comput. 10(1), 183–197 (2010)

    Article  Google Scholar 

  18. Osowski, S., Siwek, K., Siroic, R.: Neural system for heartbeats recognition using genetically integrated ensemble of classifiers. Comput. Biol. Med. 41(3), 173–180 (2011)

    Article  Google Scholar 

  19. Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 177(10), 2023–2048 (2007)

    Article  Google Scholar 

  20. Sepulveda, R., Montiel, O., Lizarraga, G., Castillo, O.: Modeling and simulation of the defuzzification stage of a type-2 fuzzy controller using the xilinx system generator and simulink. Stud. Comput. Intell. 257, 309–325 (2009)

    Article  Google Scholar 

  21. Sepulveda, R., Montiel, O., Castillo, O., Melin, P.: Optimizing the mfs in type-2 fuzzy logic controllers, using the human evolutionary model. Int. Rev. Autom. Control 3(1), 1–10 (2011)

    Google Scholar 

  22. Torrecilla, J.S., Rojo, E., Oliet, M., Domínguez, J.C., Rodríguez, F.: Self-organizing maps and learning vector quantization networks as tools to identify vegetable oils and detect adulterations of extra virgin olive oil. Comput. Aided Chem. Eng. 28, 313–318 (2010)

    Article  Google Scholar 

  23. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimisation and genetic algorithms using fuzzy logic for parameter adaptation and aggregation: the case neural network optimisation for face recognition. IJAISC 2(1/2), 77–102 (2010)

    Article  Google Scholar 

  24. Valdez, F., Melin, P., Licea, G.: Modular neural networks architecture optimization with a new evolutionary method using a fuzzy combination particle swarm optimization and genetic algorithms. In: Bio-inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition, pp. 199–213. Springer, Berlin (2009)

    Google Scholar 

  25. Vázquez, J.C., Valdez F., Melin P.: Comparative study of particle swarm optimization variants in complex mathematics functions. Recent Adv. Hybrid. Intell. Syst. 223–235 (2013)

    Google Scholar 

  26. Wu, K.L., Yang, M.S.: Alternative learning vector quantization. Pattern Recogn. 39(3), 351–362 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amezcua, J., Melin, P. (2014). Optimization of Modular Neural Networks with the LVQ Algorithm for Classification of Arrhythmias Using Particle Swarm Optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics