Abstract
In this chapter we present a neural network architecture to recognize if the echocardiogram image corresponds to a person with a heart disease or is an image of a person with a normal heart, so that it can facilitate the medical diagnosis of the person that may hold an illness. One of the most used methods for the detection and analysis of diseases in the human body by doctors and specialists is the use of medical imaging. These images become one of the possible means to achieve a safe estimate of the severity of the injuries and thus to initiate treatment for the benefit of the patient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bailes, R.: The use of the gray level sat to find the salient cavities in echocardiograms. J. Vis. Commun. Image Represent. 7(2), 169–195 (1996)
Banning, A.P., Behrenbruch, C., Kelion, A.D., Jacob, G., Noble, J.A.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. Medical Imaging, IEEE, pp. 226–238 (2002)
Barillot, C., Greenleaf, J.F., Kinter, T.M., McCann, H.A, McEwan, C.N., Sharp, J.C., Multidimensional ultrasonic imaging for cardiology. In: Proceedings of the IEEE, pp. 1063–1071 (1988)
Beymer, D., Kumar, R, Tanveer, S., Wang, F.: Echocardiogram view classification using edge filtered scale-invariant motion feactures. Computer Vision and Pattern Recognition. pp. 723–730 (2009)
Beymer, D., Tanveer, S., Wang, F.: Exploiting spatio-temporal information for view recognition in cardiac echo videos. Computer Vision and Pattern Recognition Workshops. Conference on IEEE Computer Society (2008)
Beymer, D., Kumair, R., Tanveer, S.M., Wang, F.: Cardiac disease detection from echocardiogram using edge filtered scale-invariant motion feactures. Computer Vision and Pattern Recognition Workshops (CVPRW). Conference on IEEE Computer Society (2010)
Cerrolaza, M., Gavidia, G., Landrove, M., Soudah, E.: Generación de modelos discretos de tejidos del ser humano a través del procesamiento y segmentación de imágenes médicas. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, pp. 200–226 (2011)
Chang, S.F., Ebadollahi, S., Wu, H.: Automatic view recognition in echocardiogram videos us ing parts-based representation. Computer Vision and Pattern Recognition CVPR. Conference on IEEE Computer Society pp.2–9, (2004)
Comaniciu, D., Krishnan, S., Zhou, X.S.: Robust real-time myocardial border tracking for echocardiography. Med. Imaging IEEE Trans 23, 849–860 (2004)
Ealy, M., Lu, D., Weaver, J.B.: Contrast enhancement of medical images using multiscale edge representation. Opt. Eng. 33(7), 1251–1261 (1994)
Kang, S.C., Hong, S. H.: A speckle reduction filter using wavelet-based methods for medical imaging application. International Conference on Digital Signal Processing (DSP), pp. 1169–1172 (2002)
Lemos, M., Navaux, A., Nehme, D., Olvier, P., Cardiac structure recognition ultrasound images. Conference focused on Speech and Image Processing, Multimedia Communications and Services, pp. 463–466 (2007)
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition. Springer, Heidelberg (2005)
Melin, P., Castillo, O.: An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inf. Sci. 177, 1543–1557 (2007)
Mendoza, O., Melin, P., Castillo, O., Licea, G.,: Type-2 fuzzy logic for improving training data and response integration in modular neural networks for image recognition. Lecture Notes in Artificial Intelligence, vol. 4529, pp. 604–612 (2007)
Mendoza, O., Melin, P., Castillo, O.: Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. J. 9, 1377–1387 (2009)
Mendoza, O., Melin, P., Licea, G.: Interval type-2 fuzzy logic for edges detection in digital images. Int. J. of Intell. Syst. 24, 1115–1133 (2009)
Sánchez, D., Melin, P.: Modular neural network with fuzzy integration and its optimization using genetic algorithms for human recognition based on iris, ear and voice biometrics. In: Melin, P., et al. (eds.) Soft Computing for Recognition Based on Biometrics, pp. 85–102. (2010)
Sánchez, D., Melin, P., Castillo, O., Valdez, F.: Modular neural networks optimization with hierarchical genetic algorithms with fuzzy response integration for pattern recognition. MICAI 2, 247–258 (2012)
Sánchez, D., Melin, P.: Multi-objective hierarchical genetic algorithm for modular granular neural network optimization. In: Batyrshin, I., Gonzalez Mendoza, M. (eds.) Soft Computing Applications in Optimization, Control, and Recognition, pp. 157–185 (2013)
Sánchez D., Melin P., Oscar Castillo, Fevrier Valdez: Modular granular neural networks optimization with Multi-Objective Hierarchical Genetic Algorithm for human recognition based on iris biometric. IEEE Congress on Evolutionary Computation pp. 772–778 (2013)
Sánchez, D., Melin, P.: Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. AI. 27, 41–56 (2014)
Shahram, E., Shih-Fu, C., Wu, H.: Automatic view recognition in echocardiogram videos using parts-based representation. Computer Vision and Pattern Recognition (2004)
Sugioka, K., Automated quantification of left ventricular function by the automated contour tracking method. J. Cardiovasc. Ultrasound Allied Tech. 20(4), 313–318 (2003)
Valdez, F., Melin, P., Castillo, O., Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119 (2009)
Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. MICAI 2, 374–385 (2012)
Vázquez, J., Valdez, F., Melin, P.: Comparative study of particle swarm optimization variants in complex mathematics functions. In: Castillo, O. (eds.) Recent Advances on Hybrid Intelligent Systems, pp. 223–235. Springer, Heidelberg (2013)
Acknowledgments
We would like to express our gratitude to CONACYT and Tijuana Institute of Technology for the facilities and resources granted for the development of this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
González, B., Valdez, F., Melin, P., Prado-Arechiga, G. (2014). Echocardiogram Image Recognition Using Neural Networks. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-05170-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05169-7
Online ISBN: 978-3-319-05170-3
eBook Packages: EngineeringEngineering (R0)