Skip to main content

On the Exact Solution of VSP for General and Structured Graphs: Models and Algorithms

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Abstract

In this chapter the vertex separation problem (VSP) is approached. VSP is NP-hard with important applications in VLSI, computer language compiler design, and graph drawing, among others. In the literature there are several exact approaches to solve structured graphs and one work that proposes an integer linear programming (ILP) model for general graphs. Nevertheless, the model found in the literature generates a large number of variables and constraints, and the approaches for structured graphs assume that the structure of the graphs is known a priori. In this work we propose a new ILP model based on a precedence representation scheme, an algorithm to identify whether or not a graph has a Grid structure, and a new benchmark of scale-free instances. Experimental results show that our proposed ILP model improves the average computing time of the reference model in 79.38 %, and the algorithm that identifies Grid-structured graphs has an effectiveness of 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16, 465–475 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Duarte, A., Escudero, L., Martí, R., Mladenovic, N., Pantrigo, J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255 (2012)

    Article  MathSciNet  Google Scholar 

  3. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  4. Leiserson, C.: Area-efficient graph layouts (for VLSI). In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 270–281 (1980)

    Google Scholar 

  5. Bodlaender, H., Gustedt, J., Telle, J.: Linear time register allocation for a fixed number of registers. In: Proceedings of the Symposium on Discrete Algorithms. (1998)

    Google Scholar 

  6. Kornai, A.: Narrowness, path-width, and their application in natural language processing. Discrete Appl. Math. 36, 87–92 (1997). Elsevier Science Publishers B. V. (1992)

    Article  MathSciNet  Google Scholar 

  7. Lopes, I., de Carvalho, J.: Minimization of open orders using interval graphs. IAENG Int. J. Appl. Math. 40(4), 297–306 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Ellis, J., Sudborough, I., Turner, J.: The vertex separation and search number of a graph. Inf. Comput. 113, 50–79 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Skodinis, K.: Computing optimal linear layouts of trees in linear time. In: Paterson, M. (ed.) Proceedings of 8th Annual European Symposium on Algorithms. LNCS, vol. 1879, pp. 403–414. Springer, London (2000)

    Google Scholar 

  10. Bollobás, B., Leader, I.: Edge-Isoperimetric inequalities in the grid. Combinatorica 11, 299–314 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, D., Batson, R., Dang, Y.: Applied Integer Programming: Modeling and Solution. Wiley publisher. ISBN: 978-1-118-21002-4. (2010)

    Google Scholar 

  12. Pantrigo, J., Martí, R., Duarte, A., Pardo, E.: Scatter search for the Cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Barabasí, A.: Emergence of Scaling in Complex Networks. Handbook of graphs and networks: from the Genome of the Internet, pp. 69–84. (2005)

    Google Scholar 

  14. López, T.: Complejidad Computacional Estructural en Redes Complejas. PhD Thesis. Universidad Autónoma de Nuevo León, México (2012)

    Google Scholar 

  15. Eppstein, D., Wang, J.: A steady state model for graphs power laws. arXiv preprint cs/0204001. (2002)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the National Council of Science and Technology of Mexico (CONACYT), the General Direction of Higher Technological Education (DGEST) and the Ciudad Madero Institute of Technology (ITCM) for their financial support. We also thank IBM Academic Initiative for allowing us to use their optimization engine CPLEX v12.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Joaquín Fraire Huacuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castillo-García, N., Huacuja, H.J.F., Rangel, R.A.P., Flores, J.A.M., Barbosa, J.J.G., Valadez, J.M.C. (2014). On the Exact Solution of VSP for General and Structured Graphs: Models and Algorithms. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics