Abstract
A key challenge in cancer genomics is the identification and prioritization of genomic aberrations that potentially act as drivers of cancer. In this paper we introduce HIT’nDRIVE, a combinatorial method to identify aberrant genes that can collectively influence possibly distant “outlier” genes based on what we call the “random-walk facility location” (RWFL) problem on an interaction network. RWFL differs from the standard facility location problem by its use of “multi-hitting time”, the expected minimum number of hops in a random walk originating from any aberrant gene to reach an outlier. HIT’nDRIVE thus aims to find the smallest set of aberrant genes from which one can reach outliers within a desired multi-hitting time. For that it estimates multi-hitting time based on the independent hitting times from the drivers to any given outlier and reduces the RWFL to a weighted multi-set cover problem, which it solves as an integer linear program (ILP). We apply HIT’nDRIVE to identify aberrant genes that potentially act as drivers in a cancer data set and make phenotype predictions using only the potential drivers - more accurately than alternative approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009)
Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446(7132), 153–158 (2007)
Greenman, C., Wooster, R., Futreal, P.A., Stratton, M.R., Easton, D.F.: Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173(4), 2187–2198 (2006)
Youn, A., Simon, R.: Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27(2), 175–181 (2011)
Parsons, D.W., Jones, S., Zhang, X., Lin, J.C.H., Leary, R.J., Angenendt, P., et al.: An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897), 1807–1812 (2008)
Cancer Genome Atlas Network: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011)
Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)
Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481(7381), 306–313 (2012)
Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., et al.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–510 (2012)
Akavia, U.D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., et al.: An integrated approach to uncover drivers of cancer. Cell 143(6), 1005–1017 (2010)
Masica, D.L., Karchin, R.: Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Research 71(13), 4550–4561 (2011)
Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Computational Biology 9(5), e1003054 (2013)
Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Research 22(2), 398–406 (2012)
Kim, Y.A., Wuchty, S., Przytycka, T.M.: Identifying causal genes and dysregulated pathways in complex diseases. PLoS Computational Biology 7(3), e1001095 (2011)
Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., et al.: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26(12), i237–i245 (2010)
Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology 18(3), 507–522 (2011)
Paull, E.O., Carlin, D.E., Niepel, M., Sorger, P.K., Haussler, D., et al.: Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics, 1–8 (2013)
Bashashati, A., Haffari, G., Ding, J., Ha, G., Lui, K., et al.: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biology 13(12), R124 (2012)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)
Hopcroft, J., Sheldon, D.: Manipulation-resistant reputations using hitting time. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 68–81. Springer, Heidelberg (2007)
Tetali, P.: Design of on-line algorithms using hitting times. SIAM J. Comput. 28(4), 1232–1246 (1999)
Dao, P., Wang, K., Collins, C., Ester, M., Lapuk, A., Sahinalp, S.C.: Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics 27(13) (July 2011)
Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2008)
Hormozdiari, F., Alkan, C., Eichler, E.E., Sahinalp, S.C.: Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Research 19(7), 1270–1278 (2009)
Mihail, M., Papadimitriou, C.H., Saberi, A.: On certain connectivity properties of the internet topology. J. Comput. Syst. Sci. 72(2), 239–251 (2006)
Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., et al.: A census of human cancer genes. Nature reviews. Cancer 4(3), 177–183 (2004)
Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., et al.: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research 39(database issue), D945–D950 (2011)
Prasad, T.S.K., Kandasamy, K., Pandey, A.: Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods in Molecular Biology 577, 67–79 (2009)
Cancer Genome Atlas Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008)
Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)
McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., et al.: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13(4), 805–811 (1994)
Piccirillo, S.G.M., Reynolds, B.A., Zanetti, N., Lamorte, G., Binda, E., et al.: Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120), 761–765 (2006)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Shrestha, R. et al. (2014). HIT’nDRIVE: Multi-driver Gene Prioritization Based on Hitting Time. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-05269-4_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05268-7
Online ISBN: 978-3-319-05269-4
eBook Packages: Computer ScienceComputer Science (R0)