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ABSTRACT
* This paper analyzes a class of dissemination algorithms
for the discovery of distributed contents in Peer-to-Peer un-
structured overlay networks. The algorithms are a mix of
protocols employing local knowledge of peers’ neighborhood
and gossip. By tuning the gossip probability and the depth k

of the k-neighborhood of which nodes have information, we
obtain different dissemination protocols employed in litera-
ture over unstructured P2P overlays. The provided analysis
and simulation results confirm that, when properly config-
ured, these schemes represent a viable approach to build
effective P2P resource discovery in large-scale, dynamic dis-
tributed systems.

ABSTRACT
This paper analyzes a class of dissemination algorithms for
the discovery of distributed contents in Peer-to-Peer un-
structured overlay networks. The algorithms are a mix of
protocols employing local knowledge of peers’ neighborhood
and gossip. By tuning the gossip probability and the depth k

of the k-neighborhood of which nodes have information, we
obtain different dissemination protocols employed in litera-
ture over unstructured P2P overlays. The provided analysis
and simulation results confirm that, when properly config-
ured, these schemes represent a viable approach to build
effective P2P resource discovery in large-scale, dynamic dis-
tributed systems.

1. INTRODUCTION
This paper deals with resource discovery in large-scale,

dynamic Peer-to-Peer (P2P) distributed communication sys-
tems. In this context, it has been recognized that an inter-
esting approach consists in exploiting unstructured overlay
networks [2, 6, 8], which are alternative to traditional struc-
tured solutions [7]. Indeed, there are some clear drawbacks
related to unstructured networks, that make structured ones
more effective in some distributed systems. In particular,
the main weakness of unstructured nets is that links among
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nodes do not depend on the distribution of the contents.
This means that in general it is not possible to provide a
bound on the number of nodes that might be involved dur-
ing the lookup of a resource. On the other hand, the ad-
vantages are the easier manageability and the possibility of
implementing resource discovery systems based on partial-
match and complex queries. Conversely, several structured
P2P approaches (e.g. those based on DHTs) strongly limit
the expressiveness of the queries to retrieve contents. For
these reasons, understanding if, how and when unstructured
overlays can support resource and content lookup represents
an interesting research topic.

A main aspect refers to the algorithm employed to dis-
tribute queries among nodes, that strongly influences the
performance of the whole system. In this paper, we study
a simple class of dissemination algorithms, which are a mix
of push-gossip based and informed propagation schemes [4].
Each node has knowledge of its k-neighborhood, i.e. those
nodes that are distant at most k hops from it. This infor-
mation is exploited during the routing of messages in the
overlay, i.e. a node sends the message to those 1-neighbors
that can relay the message to the k-neighbours that hit the
query. Moreover, the node gossips the message to its remain-
ing 1-neighbors. The tuning of the parameters of the algo-
rithm (i.e. gossip probability threshold and depth k of the
k-neighborhood) allows to pass, for instance, from pure lo-
cally “best neighbor selection” dissemination protocols (gos-
sip probability set equal to 0), e.g. [11], to flooding schemes
(gossip probability set equal to 1). Similarly, if the depth k

of the k-neighborhood is set k = 0, a pure gossip strategy is
obtained; when k is set equal to the network diameter, we
have a scheme with full-knowledge of the net.

We present an analytical framework that models the de-
scribed family of communication protocols. A numerical
analysis over scale-free network topologies is performed, and
it is compared with a simulation of the system. Results
confirm that dissemination protocols exploiting the combi-
nation of gossip and local knowledge about nodes’ neigh-
borhood, are a useful tool to build lookup discovery ser-
vices over large-scale unstructured P2P systems. Moreover,
the framework can be practically exploited to tune the gos-
sip probability at peers and build effective lookup discovery
services over P2P unstructured overlays. In many cases, it
is sufficient to maintain information on the 2-neighborhood
(or even 1-neighborhood, with a higher gossip probability)
to have that queries percolate through the overlay, hence
obtaining a number of query hits of the order of the number
of resources (matching the query) present in the network.
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The remainder of this paper is organized as follows. Sec-
tion 2 presents the system model and the local protocol ex-
ecuted at each node. Section 3 presents the mathematical
model. Section 4 outlines results coming from numerical
analysis and simulation. Finally, Section 5 provides some
concluding remarks.

2. SYSTEM MODEL AND PROTOCOL
Let consider unstructured overlay networks, with peers

that connect each other through a pseudo-random attach-
ment process which shapes the overlay based on a specific
network topology, defined through a degree probability dis-
tribution. The link creation process does not depend on the
placement of contents in the P2P system [5]. We denote
with Π1 the 1-neighborhood of a node n (n’s friends); in
general Πk is the k-neighborhood of a node, i.e. nodes at
most k hops away from n. Nodes know how to reach all its
k-neighbors. We assume the existence of a relay(m) pro-
cedure that returns the node that n has to contact to reach
m. Of course, if m is a 1-neighbor of n, relay(m) returns
m.

When a peer n holds (removes) from its cache a novel
resource item, it informs its k-neighborhood, through some
multicast message sent through the overlay. Hence, upon
reception at m of a message stating that n holds (deletes) a
novel resource item, m adds (removes) a related entry in its
neighbor table. This way, each time m receives a query that
hits that resource item, m can forward the query towards n.
It is clear that the higher the depth k of the neighborhood,
the higher the amount of control messages to be transmitted
to maintain correct information.

The distribution of a query is based on pure local decisions
[4]. We assume that each query contains all the information
needed to perform a matching among the requested (type of)
item and resources available in the system; in other words,
resources are described through a profile (or some meta-
data). Algorithm 1 shows the pseudo-code of the peer (n)
behavior executed to disseminate a query. When n creates
or receives a novel query from a neighbor m (which has not
be handled already, lines 1–3), first, it checks if there is a
query hit locally; in this case, the query originator is con-
tacted directly (lines 4–9).

Then, n multicasts the query to those k-neighbors that
own an item that hits the query (lines 12–15). This is ac-
complished by sending the message to its 1-neighbors that
will relay it to the target nodes. However, this is done only
if the message has a positive Time-To-Live (TTL) (lines 10–
11). (We are assuming that the TTL value allows to cover
the whole network; typically, this can be obtained using low
values of the order of the logarithm of the network size.)
Finally, n gossips the message with a probability γ ≤ 1 to
the remaining set of 1-neighbors (lines 16–20) [4].

The considered family of protocols groups together differ-
ent typical schemes employed over unstructured P2P over-
lays. Figure 1 shows the protocols we obtain depending on
the gossip threshold γ and depth of the k-neighborhood. In
fact, when k = 0 and γ > 0, we have a gossip protocol,
i.e. queries are randomly disseminated. When γ = 1 we
have a flooding protocol, i.e. messages are relayed through
all nodes’ links. Informed protocols are those where peers
have knowledge of their k-neighborhood (without using gos-
sip) [11]; they are thus placed on the k-axis, with γ = 0.
Finally, if we ideally set the k value equal to the network

Algorithm 1 Query distribution protocol executed at node
n
Require: Query Q generated at n ∨ Q received in a message

relayed by a neighbor peer m
1: if Q already handled then
2: Return
3: end if

4: if QueryHit(Q) then {local query hit}
5: s = Originator(Q)
6: rp = ProfileMatchingResource(Q)
7: msg = 〈“available”, rp〉
8: send(msg, s)
9: end if

10: decreaseTTL(Q)
11: if TTL(Q) > 0 then {relay to hitting nodes}
12: R← {relay(i)|i ∈ Πk ∧ i has an item matching Q} \m
13: for all r ∈ R do

14: send(Q, r)
15: end for
16: for all i ∈ Π1 \ {R ∪m} do {gossip}
17: if random() < γ then

18: send(Q, i)
19: end if
20: end for

21: end if
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Figure 1: Discovery protocols obtained through the
setting of the depth of the k-neighborhood and the
gossip probability γ.

diameter, then we obtain full-knowledge schemes, where the
overlay is exploited to route messages.

3. SYSTEM ANALYSIS
The goal of this analysis is to estimate the average amount

of query hits 〈h〉 that would occur, given an estimate of the
resource popularity (i.e. how much resources, that would hit
the query, are distributed in the net) and a given degree dis-
tribution probability characterizing the unstructured overlay
topology.

Each query dissemination process is considered as a stan-
dalone, independent task. This is a correct assumption if
peers have a buffer cache whose size is sufficiently large to
handle simultaneous queries. Otherwise, the model should
be extended to consider possible buffer overflows.

We assume to work with very large and dynamical P2P
systems. We already mentioned that, for small-sized and
stable nets, the use of unstructured overlays can be avoided,
since other approaches can be proficiently employed, such
as centralized solutions or structured distributed systems
(e.g. DHTs). The high number of nodes, together with the
random nature of contacts among peers in the overlay, aug-
ments the probability of having a low clustering in the net-
work [6, 10]. A consequence of the random nature of the
attachment process is that, regardless of the node degree



distribution, the probability that a 2-neighbor is also a 1-
neighbor of a node, goes as N−1, being N the number of
nodes in the overlay. Hence, this situation can be ignored
for high N values. This assumption is supported by previous
works, asserting that it is undesirable for an unstructured
P2P overlay to have high clustering [12]. In fact, clustering
reduces the connectivity of a cluster to the rest of the net,
increases the probability of partitioning, and it may cause
redundant message delivery.

We denote with pi the probability that a peer has i 1-
neighbors (its degree). Let qi be the excess degree dis-
tribution [10], i.e. the probability that, following a link in
the overlay, we arrive to a peer m that has other i links
(hence the degree of m is i + 1). Given pi, we have that

qi =
(i+1)pi+1∑

j jpj
.

Probabilities pi and qi represent two similar concepts i.e. the
number of contacts of a considered peer (its degree), and
the number of contacts obtained following a link of a peer
(its excess degree), respectively. In the following, we in-
troduce measures obtained by considering the degree pi of
a node, as well as the excess degree qi of a link. Hence,
with a slight abuse of notation we denote all the probabil-
ities/functions related to the excess degree with the same
letter used for the degree, with an arrow on top of it, just
to recall that the quantity refers to a link. Thus, for in-
stance, the generating functions for pi and qi are denoted as

G(x) =
∑

i
pix

i,
−→
G(x) =

∑

i
qix

i.
We denote with ρ the probability that a node has a re-

source item matching the considered query, and with γ the
gossip probability. If the considered protocol employs the
1-neighborhood Π1 only, then the probability that a node n

does not transmit a query to a neighbor m is (1− ρ)(1− γ),
i.e. the probability that m does not hit the query, and n

decides not to gossip to m. Hence, the probability τ1 that n
transmits the query to a neighbour m, having only knowl-
edge of its 1-neighborhood Π1 is τ1 = 1− (1− ρ)(1− γ).

With this in view, the probability that none of the n’s
1-neighbours hit the query is

∑

i
pi(1−ρ)i = G(1−ρ). This

result is obtained by considering all the possible cases of n
having degree i and its i neighbours do not hit the query.
Similarly, the probability that, given a randomly chosen edge
of n, we arrive to a node m that does not have any neighbour
(apart from the link we considered to arrive to m from n)

that hit the query is
∑

i
qi(1− ρ)i =

−→
G(1− ρ).

Following this reasoning, it is possible to determine the
probability τ2 of relaying a query to a node m when n has
knowledge of its 2-neighborhood Π2. In fact, such probabil-

ity is τ2 = 1−(1−ρ)(1−γ)
−→
G(1−ρ), i.e. n does not transmit

to m if: m does not hit the query (probability (1 − ρ)); n
decides not to gossip m (probability (1 − γ)); and n knows
that its 2-neighbours connected through m do not hit the

query (probability
−→
G(1− ρ) measured above).

The approach can be exploited to measure τk, with any
given value of k. For instance, the probability that following
a link we arrive to a node which has no neighbors in its Π2

that hit the query is
∑

i qi(1 − ρ)i[
−→
G(1 − ρ)]i =

−→
G
(

(1 −

ρ)
−→
G(1− ρ)

)

. Through this result we might obtain τ3, and
so on.

Now, the probability that n forwards a message to i of its

neighbors is

fi = τ
i
k

∑

j≥i

pj

(

j

i

)

(1− τk)
j−i

. (1)

fi considers all the possible cases of n having a degree j,
which forwards the query to i(< j) neighbors, while not
forwarding the query to its remaining j − i neighbors. Sim-
ilarly, the probability that following a link we arrive to a
node that forwards the query to i other nodes is readily ob-

tained by substituting, in (1) above, pj with qj , i.e.
−→
f i =

τ i
k

∑

j≥i qj
(

j

i

)

(1− τk)
j−i.

If we consider the generating function F of the fi coeffi-
cients, we have

F (x) =
∑

i

fix
i =

∑

i

τ
i
kx

i
∑

j≥i

pj

(

j

i

)

(1− τk)
j−i

=
∑

j

pj

j
∑

i=0

(

j

i

)

τ
i
kx

i(1− τk)
j−i

=
∑

j

pj(τkx+ 1− τk)
j = G

(

τkx+ 1− τk
)

.

The average value of coefficients fi is given by the derivative
of F measured at x = 1, i.e. F ′(1) =

∑

i
ifi,

F
′(x)

∣

∣

∣

x=1
=

dG

dx

(

τkx+ 1− τk
)

∣

∣

∣

x=1
= τkG

′(1) = τk〈p〉,

where 〈p〉 is the mean node degree.

Similarly
”

−→
F ′(x)

∣

∣

∣

x=1
= τk

−→
G ′(1) = τk〈q〉, where 〈q〉 is the

mean value of the excess degree, 〈q〉 =
∑

i iqi =
∑

i i(i+1)pi+1∑
j jpj

=

〈p2〉−〈p〉
〈p〉

.

With these measures, it is possible to obtain the whole
number of nodes reached by a message starting from a given
node, regardless of the number of hops [10]. Let consider the
probability ri that i peers receive a query, starting from a
given node and −→r i is the probability that i peers are reached
starting from a link. −→r i can be defined using the following
recurrence,

−→r 0 = 0,

−→r i+1 =
∑

j≥0

−→
f j

∑

a1+a2+...+aj=i

−→r a1

−→r a2
. . .−→r aj

. (2)

Equation (2) can be explained as follows. It measures the
probability that following a link we disseminate the query
to i+ 1 peers. (The case −→r 0 is impossible, since at the end
of a link there must be a node.) One peer is that reached at
the end of the link itself. Then, we consider the probability
that the peer forwards to other j links (varying the value of
j). Each link k allows to disseminate the query to ak peers,
and the sum of all these reached peers equals to i.

Similarly, we can calculate ri as follows

r0 = 0,

ri+1 =
∑

j≥0

fj
∑

a1+a2+...+aj=i

−→r a1

−→r a2
. . .−→r aj

. (3)

In this case, we start from the peer itself, considering it
forwards to j nodes; and as before, from these j links we
can reach i other peers, in total.



The use of generating functions, R(x) =
∑

i
rix

i,
−→
R (x) =

∑

i
−→r ix

i, allow to handle equations (2–3). In fact, after
some algebraic manipulation we have

−→
R (x) = x

∑

j≥0

−→
f j [

−→
R (x)]j = x

−→
F (

−→
R (x)) (4)

and, similarly,

R(x) = x
∑

j≥0

fj [
−→
R (x)]j = xF (

−→
R(x)). (5)

From these generating functions, it is possible to measure
the average number 〈r〉 of peers that receive a query through
the dissemination protocol, i.e. 〈r〉 =

∑

i
iri = R′(1). On

the other hand, taking (5) and differentiating

R
′(1) =

[

F (
−→
R(x)) + xF

′(
−→
R(x))

−→
R

′(x)
]

x=1
= 1 + F

′(1)
−→
R

′(1),

Similarly, from (4),
−→
R ′(1) =

[−→
F (

−→
R (x))+x

−→
F ′(

−→
R (x))

−→
R ′(x)

]

x=1
=

1 +
−→
F ′(1)

−→
R ′(1). Thus,

−→
R ′(1) = 1

1−
−→
F ′(1)

, and final formula

for 〈r〉 is

〈r〉 = 1 +
F ′(1)

1−
−→
F ′(1)

= 1 +
τk〈p〉

2

(1 + τk)〈p〉 − τk〈p2〉
. (6)

Now, 〈r〉 is the number of peers that receive the query,
regardless if these nodes have a resource item matching it.
To obtain the average number of query hits 〈h〉, it suffices to
multiply 〈r〉 by the probability ρ that a peer has a resource
item matching that query, i.e. 〈h〉 = ρ〈r〉.

Equation (6) has a divergence when (1 + τk)〈p〉 = τk〈p
2〉,

meaning that, under the assumption that the network has
an infinite size, the query reaches an infinite number of
nodes, i.e. the query percolates through the network. In
other words, an amount of nodes of the order of the network
size receives the query.

4. EVALUATION
This section presents an assessment performed by consid-

ering the analytical model and simulation. While during the
assessment we tested different network topologies, we will fo-
cus here on results concerned with scale-free networks only.
These networks are characterized by nodes having a degree
following a power law distribution ∼ pα. They are charac-
terized by the presence of hubs, i.e. nodes with degrees sig-
nificantly higher than the average, that have an important
impact on the net connectivity. The interest on scale-free
networks in this work relates to the fact that several real
P2P systems are indeed scale-free networks [3, 10].

In this study, we considered not only traditional scale free
networks, but also those with an abrupt cutoff c that limits
the maximum degree that peers can maintain, so as to bound
the workload that hubs in the P2P system must sustain.

4.1 Simulation
We have built a discrete-event simulator mimicking the

presented protocol. The simulator was written in C code
and it allows testing the behavior of a set of nodes executing
the presented dissemination protocol. It is able to generate
a random network based on a chosen degree distribution. In
particular, once having (randomly) assigned a specific target
degree to each node, using the selected degree distribution,
a random mapping is made so that links are created until

each node has reached its own target degree. During the
initialization phase, for each node a random choice was made
to place resources; the resource availability was set based
on a probability ρ, i.e. for each network node, an item was
present with probability ρ.

To build scale-free networks, the construction method was
the one proposed in [1]. This algorithm differs from other
well known proposals, which build networks with a power
law distribution by continuously adding novel nodes, hence
having networks that grow in time. Conversely, we build a
network of fixed size, characterized by two parameters a, b.
More specifically, the number y of nodes which have a degree
x satisfies log y = a − b log x, i.e. y = ⌊ ea

xb ⌋. Thus, the total

number of nodes N =
∑⌊e

a
b ⌋

x=1
ea

xb , being ⌊e
a
b ⌋ the maximum

possible degree of the network, since it must be that 0 ≤
log y = a − b log x. Once the number of nodes and their
degrees have been determined, edges are randomly created
among nodes until nodes reach their desired degrees. In the
reported results, the parameters were set to a = 6, b = 1,
resulting in networks composed of 2482 nodes.

For each overlay, we varied the values of σ, ρ in a range go-
ing from 0.01 up to 0.5, using a step of 0.01. Thus, 2500 sim-
ulation scenarios were considered. For each of these settings,
we repeated the simulation using a corpus of 20 different ran-
domly generated networks (characterized by the mentioned
statistical properties of the target topology). During each
simulation execution, we analyzed the dissemination of 400
queries sent by random nodes.

4.2 Results
In a scale free network (without cutoffs) it is known that

when α > −2 the mean diverges; when −3 < α < −2, the
mean is finite but the variance and higher moments diverge
[10]. Hence, in these cases a query easily percolates through
the network and resources are found with high probability.
Indeed, results from our assessment confirm this. (We do
not show them in charts.)

For this reason we focus, for now, on overlays with a lower
value for such exponent, i.e. α = −3.2. Figure 2 shows the
average amount of query hits in this specific scenario, ob-
tained via the analytical model and simulation, when peers
know their 1-neighborhood Π1. (In fact, when peers have
knowledge of Π2, the number of receivers diverges, and thus
each query percolates through the network.) It is possible
to observe that with lower values of γ, ρ a limited amount of
network nodes receive the disseminated queries. Then, by
increasing these two values, we reach a transition phase; and
after that, the query percolates. One might notice some dif-
ferences between the two charts referring to the analysis and
simulation. Actually, these are perfectly reasonable since the
analysis assumes an infinite network size; hence, once a mes-
sage percolates an infinite amount of nodes is reached. Con-
versely, simulations employed finite networks; hence, we ob-
tain smoother transitions where a finite (nevertheless signif-
icant, when percolation occurs) amount of nodes is reached.
With this in view, we can conclude that the two approaches
provide similar results.

Figure 3 shows the minimum value of the gossip probabil-
ity γ, to have that at least one resource is found through a
query in a scale free network with α = −3.2. The outcome
has been obtained through a numerical analysis exploiting
the mathematical model. When peers have knowledge of
Π2, with a resource presence probability ρ > 0.008 the gos-
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Figure 2: Average amount of query hits; power law degree distribution with exponent α = −3.2. Results are
shown for Π1. When Π2 is considered, the model returns an ∞ amount of query hits regardless of ρ, σ values
(hence not shown in the figure); simulation results confirmed that a high majority of nodes is reached and
that queries percolate through the net.
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Figure 3: Minimum γ to find at least one resource;
power law degree distribution with exponent α =
−3.2.

sip probability can be set γ = 0; hence, a non-negligible
threshold for the gossip probability is needed only for rare
items. This result is due by the presence of hubs that man-
age information of a high number of nodes.

It has been already mentioned that scale-free networks are
characterized by the presence of hubs; moreover, we already
mentioned the importance of introducing a cutoff that limits
the maximum amount of contacts a peer may have in the
overlay. Figure 4 shows the percolation transition values
(i.e. those values of γ and ρ above which queries do perco-
late through the net) for different scale-free networks, when
varying the exponent α of the degree distribution1 (differ-
ent rows in the figure), the depth k of the k-neighborhood
(different charts in each row), and different settings for the
cutoff c (different curves on each chart). Results are ob-
tained through numerical measurements exploiting the an-
alytical model. In this case, the cutoff has an influence on
the ability of nodes to disseminate the query. In fact, the
lower the cutoff the lower the number of links leaving from
the hubs, and thus the more difficult is to spread the query.
An interesting result related to the introduction of the cut-
off, in line with what already mentioned, is that the lower
the exponent α of the power law distribution, the higher

1In this case, the cutoff imposes a limit on the moments of
the degrees, that do not diverge; hence, it is interesting to
consider networks with values of α higher than those con-
sidered above.

the γ to let queries percolate. This is due to the fact that
the presence of the cutoff avoids that the first and second
moments of the degree diverge. Moreover, the lower the ex-
ponent α the faster the distribution goes to 0, and thus the
higher the probability that nodes have low degrees, and thus
the lower the connectivity of the network and its ability to
spread contents.

Similarly, and as expected, in Figure 4 the higher the cut-
off the lower the γ to let queries percolate, since the presence
of nodes with higher degrees (hubs) augments the connec-
tivity of the network and its ability to spread contents.

Of course, when nodes have knowledge of 2-neighbors,
very small γ values are needed with lower cutoffs (see charts
on the right in the figure), while negligible values of γ are
necessary for higher settings of the cutoff c.

To sum up, outcomes confirm that lookup operations can
be easily built over scale-free unstructured overlays.

5. CONCLUSIONS
We analyzed the performance of a class of simple dis-

semination protocols, employing local knowledge of peers’
neighborhood and gossip, to perform resource lookup over
P2P unstructured overlays. The provided analytical frame-
work allows to tune the gossip probability to spread queries
through the overlay, given a network topology and a resource
probability distribution. These network parameters can be
estimated using some techniques such as entropy-reduction
protocols [9].

We tested our approach over scale-free networks. It turns
out that, in certain scenarios, it might be difficult to locate
rare items with naive informed schemes without gossip (es-
pecially if Π1 is exploited); this is in accordance with some
previous results [11]. However, in most cases very low gossip
probabilities are sufficient. Thus, when networks are large
in size and with a high level of churn, these solutions rep-
resent an interesting alternative to dissemination strategies
built on top of costly structured distributed systems.
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