Skip to main content

Online Learning Based on Prototypes

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8398))

Included in the following conference series:

  • 2830 Accesses

Abstract

The problem addressed in this paper concerns learning form data streams with concept drift. The goal of the paper is to propose a framework for the online learning. It is assumed that classifiers are induced from incoming blocks of prototypes, called data chunks. Eachdata chunk consists of prototypes including also information as to whether the class prediction of these instances was correct or not. When a new data chunk is formed, classifier ensembles formed at an earlier stage are updated. Three online learning algorithms for performing machine learning on data streams based on three different prototype selection approaches to forming data chunks are considered. The proposed approach is validated experimentally and the computational experiment results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based Learning Algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  2. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Baena-Garcia, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams (2006)

    Google Scholar 

  4. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: SDM. SIAM (2007)

    Google Scholar 

  5. Bifet, A., Gavaldà, R.: Kalman filters and adaptive windows for learning in data streams. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 29–40. Springer, Heidelberg (2006)

    Google Scholar 

  6. Bifet, A.: Adaptive learning and mining for data streams and frequent patterns. PhD thesis, Universitat Politecnica de Catalunya (2009)

    Google Scholar 

  7. Caragea, D., Silvescu, A., Honavar, V.: Agents That Learn from Distributed Dynamic Data Sources. In: ECML 2000/Agents 2000 Workshop on Learning Agents, Barcelona, Spain (2000)

    Google Scholar 

  8. Chaudhuri, S., Motwani, R., Narasayya, V.R.: On random sampling over joins. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD Conference, pp. 263–274. ACM Press (1999)

    Google Scholar 

  9. Chen, H., Gong, Y., Hong, X., Chen, S.: A Fast Adaptive Tunable RBF Network For Non-stationary Systems. Transactions on Systems, Man, and Cybernetics, Part B (2012) (to appear)

    Google Scholar 

  10. Cichosz, P.: Systemy uczące się. Wydawnictwo Naukowo-Techniczne, Warszawa (2000) (in Polish)

    Google Scholar 

  11. Cohen, E., Strauss, M.J.: Maintaining time-decaying stream aggregates. Journal of Algorithms 59(1), 19–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Datasets used for classification: comparison of results. Directory of Data Sets, http://www.is.umk.pl/projects/datasets.html (accessed September 1, 2009)

  13. Deckert, M., Stefanowski, J.: Comparing Block Ensembles for Data Streams with Concept Drift. In: Pechenizkiy, M., Wojciechowski, M., (eds.) New Trends in Databases & Inform. Syst. AISC, vol. 185, pp. 69–78. Springer, Heidelberg (2012)

    Google Scholar 

  14. Fan, W., Stolfo, S.J., Zhang, J.: The application of AdaBoost for distributed, scalable and on-line learning. In: KDD 1999, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 362–366. ACM, New York (1999)

    Google Scholar 

  15. Hart, P.E.: The Condensed Nearest Neighbour Rule. IEEE Transactions on Information Theory 14, 515–516 (1968)

    Article  Google Scholar 

  16. Jędrzejowicz, J., Jędrzejowicz, P.: Online Classifiers Based on Fuzzy C-means Clustering. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS (LNAI), vol. 8083, pp. 427–436. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Jędrzejowicz, J., Jędrzejowicz, P.: Cellular GEP-Induced Classifiers. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 343–352. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Klinkenberg, R.: Learning Drifting Concepts: Example Selection vs. Example Weighting. Intelligent Data Analysis. Incremental Learning Systems Capable of Dealing with Concept Drift 8(3), 281–300 (2004)

    Google Scholar 

  19. Kubat, M., Widmer, G.: Adapting to drift in continuous domains. Tech. Report ÖFAI-TR-94-27, Austrian Research Institute for Artificial Intelligence, Vienna (1994)

    Google Scholar 

  20. Kuncheva, L., Whitaker: Measures of diversity in classifier ensembles. Machine Learning 51, 181–207 (2003)

    Google Scholar 

  21. Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Last, M.: Online Classification of Nonstationary Data Streams. Intelligent Data Analysis 6(2), 129–147 (2002)

    MATH  MathSciNet  Google Scholar 

  23. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    Google Scholar 

  24. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, SanMateo (1993)

    Google Scholar 

  25. Sahel, Z., Bouchachia, A., Gabrys, B., Rogers, P.: Adaptive Mechanisms for Classification Problems with Drifting Data. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 419–426. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Salganicoff, M.: Tolerating concept and sampling shift in lazy learning using prediction error context switching. AI Review, Special Issue on Lazy Learning 11(1-5), 133–155 (1997)

    Article  Google Scholar 

  27. Shalev-Shwartz, S.: Online learning: Theory, Algorithms, and Applications. PhD thesis (2007)

    Google Scholar 

  28. Stefanowski, J.: Multiple and Hybrid Classifiers. In: Polkowski, L. (ed.) Formal Methods and Intelligent Techniques in Control, Decision Making. Multimedia and Robotics, Warszawa, pp. 174–188 (2001)

    Google Scholar 

  29. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: FOCS, pp. 359–366 (2000)

    Google Scholar 

  30. Tsoumakas, G., Angelis, L., Vlahavas, I.: Clustering Classifiers for Knowledge Discovery from Physically Distributed Databases. Data & Knowledge Engineering 49, 223–242 (2004)

    Article  Google Scholar 

  31. Tsymbal, A.: The Problem of Concept Drift: Definitions and Related work. Tech. Rep. TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Dublin, Ireland (2004)

    Google Scholar 

  32. Venkatesh, G., Gehrke, J., Ramakrishnan, R.: Mining Data Streams under Block Evolution. SIGKDD Explorations 3(2), 1–10 (2002)

    Article  Google Scholar 

  33. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Software 11(1), 37–57 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  35. Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance-based Learning Algorithm. Machine Learning 33(3), 257–286 (2000)

    Article  Google Scholar 

  36. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufman, San Francisco (2005)

    Google Scholar 

  37. Zhu, X., Zhang, P., Lin, X., Shi, Y.: Active Learning from Data Streams. In: Proceedings of the Seventh IEEE International Conference on Data Mining, pp. 757–762 (2007)

    Google Scholar 

  38. Zliobaite, I.: Adaptive training set formation. PhD thesis, Vilnius University, Vilnius (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Czarnowski, I., Jędrzejowicz, P. (2014). Online Learning Based on Prototypes. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds) Intelligent Information and Database Systems. ACIIDS 2014. Lecture Notes in Computer Science(), vol 8398. Springer, Cham. https://doi.org/10.1007/978-3-319-05458-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05458-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05457-5

  • Online ISBN: 978-3-319-05458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics