Skip to main content

Facial Age Estimation: A Data Representation Perspective

  • Chapter
  • First Online:
Human-Centered Social Media Analytics
  • 1942 Accesses

Abstract

Facial age estimation has many potential applications in the area of human-centered computing, since age plays a very important role in human society. Traditional approaches to automatic facial age estimation mainly aim to model the mapping from the face image \(\mathbf x \) to the age y. On the contrary, this chapter presents two typical solutions based on special data representation forms other than the traditional \(x\rightarrow y\) mapping, which are specially designed to match the characteristics of human facial aging effects. The first solution is called AGES (AGing pattErn Subspace), which mainly manipulates the left side of the mapping. The basic idea is to model the aging pattern, which is defined as the sequence of a particular individual’s face images sorted in time order, by constructing a representative subspace. The second solution is based on a new learning paradigm named label distribution learning, which mainly manipulates the right side of the mapping. The basic idea is to regard each face image as an instance associated with a label distribution which covers a certain number of age labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, A.L., Pietra, S.D., Pietra, V.J.D.: A maximum entropy approach to natural language processing. Computat. Linguist. 22(1), 39–71 (1996)

    Google Scholar 

  2. Bruyer, B., Scailquin, J.C.: Person recognition and ageing: the cognitive status of addresses—an empirical question. Int. J. Psychol. 29(3), 351–366 (1994)

    Article  Google Scholar 

  3. Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 585–592. Colorado Springs (2011)

    Google Scholar 

  4. Dehon, H., Brédart, S.: An ‘other-race’ effect in age estimation from faces. Perception 30(9), 1107–1113 (2001)

    Article  Google Scholar 

  5. Denoeux, T., Zouhal, L.M.: Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets Syst. 122(3), 409–424 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edwards, G.J., Lanitis, A., Cootes, C.J.: Statistical face models: improving specificity. Image Vision Comput. 16(3), 203–211 (1998)

    Article  Google Scholar 

  7. FG-NET Aging Database. http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.htm

  8. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  9. Fu, Y., Huang, T.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. Multimedia 10(4), 578–584 (2008)

    Article  Google Scholar 

  10. Fu, Y., Xu, Y., Huang, T.S.: Estimating human age by manifold analysis of face pictures and regression on aging features. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 1383–1386. Beijing (2007)

    Google Scholar 

  11. Geng, X., Smith-Miles, K., Zhou, Z.H.: Facial age estimation by learning from label distributions. In: Proceedings of 24th AAAI Conference on Artificial Intelligence, pp. 451–456. Atlanta (2010)

    Google Scholar 

  12. Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2401–2412 (2013)

    Article  Google Scholar 

  13. Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  14. Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for automatic age estimation. In: Proceedings of the 14th ACM International Conference on Multimedia, pp. 307–316. Santa Barbara (2006)

    Google Scholar 

  15. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008)

    Article  MathSciNet  Google Scholar 

  16. Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–664. Colorado Springs (2011)

    Google Scholar 

  17. Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 112–119. Miami (2009)

    Google Scholar 

  18. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. B 23(3), 665–685 (1993)

    Google Scholar 

  19. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  20. Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. Syst. Man Cybern. Part B 34(1), 621–628 (2004)

    Google Scholar 

  21. Lanitis, A., Taylor, C.J., Cootes, T.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  22. Leonardis, A., Bishof, H.: Robust recognition using eigenimages. Comput. Vis. Image Und. 78(1), 99–118 (2000)

    Article  Google Scholar 

  23. Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 85–94. Vancouver (2009)

    Google Scholar 

  24. Ni, B., Song, Z., Yan, S.: Web image and video mining towards universal and robust age estimator. IEEE Trans. Multimedia 13(6), 1217–1229 (2011)

    Article  Google Scholar 

  25. Pietra, S.D., Pietra, V.J.D., Lafferty, J.D.: Inducing features of random fields. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 380–393 (1997)

    Article  Google Scholar 

  26. Quost, B., Denoeux, T.: Learning from data with uncertain labels by boosting credal classifiers. In: Proceedings of 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data, pp. 38–47. Paris (2009)

    Google Scholar 

  27. Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: Proceedings of 7th International Conference on Automatic Face and Gesture Recognition, pp. 341–345. Southampton (2006)

    Google Scholar 

  28. Roweis, S.: EM algorithms for PCA and SPCA. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 626–632. MIT Press, Cambridge (1998)

    Google Scholar 

  29. Smyth, P.: Learning with probabilistic supervision. In: Petsche, T. (ed.) Computational Learning Theory and Natural Learning System, vol. III, pp. 163–182. MIT Press, MA (1995)

    Google Scholar 

  30. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc. B: Stat. Methodol. 61, 611–622 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehouse. Min. 3(3), 1–13 (2007)

    Article  Google Scholar 

  32. Wiberg, T.: Computation of principal component when data are missing. In: Proceedings of the 2nd Symposium on Computational Statistics, pp. 229–236. Berlin (1976)

    Google Scholar 

  33. Yan, S., Wang, H., Huang, T.S., Yang, Q., Tang, X.: Ranking with uncertain labels. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 96–99. Beijing (2007)

    Google Scholar 

  34. Yan, S., Wang, H., Tang, X., Huang, T.S.: Learning auto-structured regressor from uncertain nonnegative labels. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1–8. Rio de Janeiro (2007)

    Google Scholar 

  35. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  36. Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., Huang, T.S.: Regression from patch-kernel. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage (2008)

    Google Scholar 

  37. Zhang, Y., Yeung, D.Y.: Multi-task warped gaussian process for personalized age estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2622–2629. San Francisco (2010)

    Google Scholar 

  38. Zhuang, X., Zhou, X., Hasegawa-Johnson, M., Huang, T.S.: Face age estimation using patch-based hidden markov model supervectors. In: Proceedings of International Conference on Pattern Recognition, pp. 1–4. Tampa (2008)

    Google Scholar 

  39. Zimmermann, H.J. (ed.): Practical Applications of Fuzzy Technologies. Kluwer Academic Publishers, Netherlands (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (61273300, 61232007), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Excellent Young Teachers Program of SEU, and the Key Lab of Computer Network and Information Integration of Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Geng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geng, X. (2014). Facial Age Estimation: A Data Representation Perspective. In: Fu, Y. (eds) Human-Centered Social Media Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-05491-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05491-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05490-2

  • Online ISBN: 978-3-319-05491-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics