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Abstract

Parsing 2D radiographs into anatomical regions is a challenging task with many applications. In 

the clinic, scans routinely include anterior-posterior (AP) and lateral (LAT) view radiographs. 

Since these orthogonal views provide complementary anatomic information, an integrated analysis 

can afford the greatest localization accuracy. To solve this integration we propose automatic 

landmark candidate detection, pruned by a learned geometric consensus detector model and 

refined by fitting a hierarchical active appearance organ model (H-AAM). Our main contribution 

is twofold. First, we propose a probabilistic joint consensus detection model which learns how 

landmarks in either or both views predict landmark locations in a given view. Second, we refine 

landmarks by fitting a joint H-AAM that learns how landmark arrangement and image appearance 

can help predict across views. This increases accuracy and robustness to anatomic variation. All 

steps require just seconds to compute and compared to processing the scouts separately, joint 

processing reduces mean landmark distance error from 27.3 mm to 15.7 mm in LAT view and 

from 12.7 mm to 11.2 mm in the AP view. The errors are comparable to human expert inter-

observer variability and suitable for clinical applications such as personalized scan planning for 

dose reduction. We assess our method using a database of scout CT scans from 93 subjects with 

widely varying pathology.
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1 Introduction

Many medical imaging protocols rely on 2-D radiographs for patient specific organ 

localization, which facilitates a variety of clinical applications including scanner set-up and 

scan planning, precise organ segmentation, semantic navigation and structured image search. 
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Manual organ localization can be time consuming, impede workflow and often suffers from 

large operator errors. Automatic localization from 2-D radiographs is therefore urgently 

needed. In this paper, we enable the automatic parsing of 2D radiographs from ubiquitous 

clinical CT scans. Such scans routinely include both a 2D anterior-posterior (AP) scout and 

a lateral (LAT) projection scout image. Automatic organ localization from 2-D scout images 

is a very challenging task due to low image quality from high noise level and low image 

contrast. Furthermore, scout images are 2-D projections of three dimensional data and as 

such have greatly reduced image information due to significant tissue overlap compared to 

volumetric scans. Representative 2D scout images are shown in Fig. 1a–d.

We hypothesize that an image analysis method combining information from AP and LAT 

views will afford the greatest localization accuracy. Our proposed solution (Fig. 1e) has two 

steps. First a set of landmarks delineating the boundaries of salient organs is extracted from 

the image pair though a joint consensus detector which removes outliers from the set of 

landmark candidates detected on AP and LAT views. This organ localization is further 

refined by fitting a hierarchical active appearance organ model (H-AAM) to the image pair.

Previous methods using landmark detection to parse radiographs include [5,8]. In [8] false 

negatives are not inferred nor are the detections refined with a joint H-AAM which we show 

substantially improve accuracy. In [5] the landmark detection uses only a single AP-only 

model and does not handle LAT images. It is essential to process both scouts because their 

orthogonal views provide complementary organ location information. Parsing 3D CT 

volumes using landmark detection has been presented [6], where the landmark detections are 

refined by searching exemplar cross-correlation maps. Active shape model (ASM) [3] and 

active appearance model (AAM) [1] have also been reported to combine with landmark 

detection approach. In [7], an active shape model based refinement was applied after 

landmark detections. In [2], the shape model fitting is driven by a random forest regression 

voting. Neither of these methods directly applies to soft tissue localization in radiographs. 

This is because the projective image formation causes multiple structures to overlap making 

direct application of ASMs error prone and because the non-Hounsfield pixel intensities 

make cross-correlation maps problematic.

2 Methods

Our method (Fig. 1e) consists of two steps: (1) joint landmark set consensus detection for an 

initial organ localization, (2) refinement by joint H-AAM fitting. The following sections 

describe each step.

2.1 Joint Landmark Set Detection

Joint landmark set detection consist of two substeps. We begin with the input which consists 

of a pair of 2D scout images, one for the AP scout, denoted IAP, and one for the LAT scout, 

ILAT (Fig. 2a). These are processed separately using an individual “sliding-window” patch 
detector for each landmark. One set of detectors searches IAP and outputs a set of candidate 

landmark locations CAP, while another set searches ILAT and outputs candidate locations 

CLAT. Detectors are run in parallel. In general, the output candidate sets contain false 

positives and negatives. Both are corrected by applying a joint landmark set consensus 
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detector in Fig. 2a (box 3). This employs a greedy approach that iteratively removes the least 

likely candidate, considering the set of candidates recovered from both views and the 

probabilistic anatomy (landmark constellation) model. The result after consensus detection 

is a consistent N-labeling of the N landmarks for each subject. These N labels consist of 

landmarks for the AP scout, LAP,1, and for the LAT scout LLAT,1.

Training and Applying Landmark Detectors.—Each individual landmark detector is 

trained as a two-category rejection cascade classifier [9], Fig. 2e, using supervised learning. 

Each cascade stage is a Gentle Adaboost [4] classifier.

To train we need positive landmark patches and negative patches. Positives come from 

cropping a rectangular patch around each manually annotated landmark. As illustrated in 

Fig. 2b we manually label 21 AP landmarks including: heart-diaphragm intersection (1, 11), 

diaphragm peak (2), lung corners (3, 19), left most in left lung (15), lung sides at 1/3 and 2/3 

the arc length to top (4, 5, 18, 17), top of lungs (6, 16), airway-lung intersections (7, 13), 

heart top (14), heart sides (8, 12) at 1/2 arc length to top, ends of diaphragm near heart (9, 

10), lower rib cage beneath lungs (20, 21). As shown in Fig. 2c we use 13 LAT landmarks : 

ends of diaphragm (1, 13), spine-diaphragm intersection (2), top of lung (5), lung side (3, 

12) at 2/3 the arc length to top, posterior of spine (4) at 2/3 the arc length to lung top, heart 

top (6), heart side (7), heart-diaphragm intersection (8), bottom of heart (9), right most of 

heart (10), heart side (11) at 2/3 the arc length bottom to top. These landmarks delineate 

lung and heart boundaries. The positive exemplars for each landmark are image patches 

large enough to include visible anatomical structure around the landmark. Negative 

exemplars are randomly cropped from the image that overlap the positive by <40%. Haar 

image features (Fig. 2d) are computed efficiently using integral images [9]. Each cascade 

stage is trained to achieve a true positive rate of 99.7 % with a false positive rate of 50% and 

stages are added until a desired overall true/false positive rate is reached or a maximum 

number of stages (15) is achieved.

Joint Landmark Set Consensus Detector.—Applying the landmark detectors yields a 

set of candidate detections, C = CAP ∪ CLAT. There can be multiple detections per landmark 

(false positives) and landmarks that were not detected but are present (false negatives). To 

correct for both cases we use a consensus detector to remove the false positives and infer the 

false negatives. There are two phases of consensus detection: training and application of the 

trained model which are described next.

Phase 1, Training:  Training learns a probabilistic model of the global geometric 

arrangement of the landmarks in the N-landmark constellation. Given the manually labeled 

N-landmark set for each pair of training images, then for each target landmark i, and for 

each pair of voting landmarks from the remaining N-1, we learn the multivariate Gaussian 

distribution of the relative position of i to the location of the pair. Each distribution encodes 

the probability the target landmark i is at any location in the image plane, conditioned on the 

location of the voting pair. Specifically, denoting the N-landmark set as L = LAP ∪ LLAT, and 

the pair of distinct voting landmarks as si ⊂ L, we learn the parameters, μi and Σi of the 
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multi-variate Gaussian distribution for each target landmark, q ∈ L and q ∉ si using 

maximum likelihood estimation (MLE).

To formulate the optimization, we begin by letting the coordinates of the AP image be (x, z); 

those of LAT image be (y, z). We use linear regression to model the dependency of the target 

landmark q’s coordinates on the location of the two voting landmarks in si. The target’s 

coordinates are (x3, z3) if from the AP image and (y3,z3) if from the LAT image. The voting 

landmarks can both be from the AP, both from the LAT or one from each. All possible cases 

of target and voting landmarks are modeled using Eqs. (1)–(6):

x3 = α0 + α1x1 + α2z1 + α3x2 + α4z2 z3 = β0 + β1x1 + β2z1 + β3x2 + β4z2 (1)

x3 = α0 + α1x1 + α2z1 + α3y2 + α4z2 z3 = β0 + β1x1 + β2z1 + β3y2 + β4z2 (2)

x3 = α0 + α1y1 + α2z1 + α3y2 + α4z2 z3 = β0 + β1y1 + β2z1 + β3y2 + β4z2 (3)

y3 = α0 + α1y1 + α2z1 + α3y2 + α4z2 z3 = β0 + β1y1 + β2z1 + β3y2 + β4z2 (4)

y3 = α0 + α1y1 + α2z1 + α3x2 + α4z2 z3 = β0 + β1y1 + β2z1 + β3x2 + β4z2 (5)

y3 = α0 + α1x1 + α2z1 + α3x2 + α4z2 z3 = β0 + β1x1 + β2z1 + β3x2 + β4z2 (6)

Using the voting pair si, we model the probability that the target is at any location x in the 

kth training image as a multivariate Gaussian:

pk(x) = 1
2π Σki

e
− 1

2 x − μki
TΣki

−1 x − μki .

The unknown coefficients from the appropriate pair of linear regression equations (1)–(6) 

can be used to form a projection matrix:

Ai =

α0 β0
α1 β1
α2 β2
α3 β3
α4 β4

(7)
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Similarly, given K total training LAT/AP image pairs, the coordinates of the voting 

landmarks can be expressed compactly as Ps (where x becomes x or y depending on AP or 

LAT) and the target coordinates as Pt using:

Ps =

1 x11 z11 x21 z21
1 x12 z12 x22 z23
⋮ ⋮ ⋮ ⋮ ⋮
1 x1k z1k x2k z2k

(8)

Pt =
x1 x2 … xk

z1 z2 … zk
(9)

We compute the projection matrix via MLE using Ai = Ps
TPs

−1
PtPs

T. Then the mean and 

covariance parameterizing the Gaussian are computed from: μi = PsAi and Σi = cov Pt
T − μi . 

Note that even if the AP and LAT scans are not aligned well our method still works well 
because our model learns the distribution of AP/LAT misalignments.

Phase 2, application of the trained model:  First we iteratively prune false positives, 

similar to [7,8]. At each iteration we remove the candidate least likely to be valid. Candidate 

likelihood is the maximum probability of the candidate, computed from the Gaussian 

distributions given its relative position to all other pairs of landmark candidates. Lowest 

probability candidate is removed if its probability is <τ, an empirically determined 

threshold. Iterations stop when the lowest probability >τ.

Next we infer the location of false negative landmarks, which is unique to our method and 

not found in [7,8]. Given C our set of candidate detections, we let P be the set of landmarks 

spanned by C. The undetected landmarks are U = L \ P. For each undetected landmark 
u ∈ U, we infer its location, x, using predictions from the detected candidates. We compute a 

location estimate for each subset ck ⊂ P of two candidates of distinct landmarks, using the 

mean offset, μ, from ck learned in our training dataset. This forms a set of estimates, E = 

{en} where en = (xn, zn) for AP image. Our final estimate of en is formed from the trimmed 

mean of the central 50 % over all estimates in E.

2.2 Joint H-AAM Organ Localization

Joint H-AAM.—Like the consensus detector, the active appearance model (AAM) is also a 

generative learning-based approach. Trained on labelled image data, the model learn both 

relative positions between different parts of the object and the expected textures inside the 

ROI. By incorporating both shape and appearance information, AAM-based interpretation 

leads to a robust solution even in the presence of serious image noise and large structure 

variation.
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In this work, a joint H-AAM approach is introduced, encoding shape and appearance 

information from both AP and LAT views. Furthermore, a hierarchical pyramid is employed. 

At the coarse level, a single global joint model is trained on the manually-labelled 

radiographs of AP and LAT views. All landmarks used to train joint consensus detectors are 

included in the model. There are 21 landmarks in training image IAP of AP scout and 13 

landmarks in ILAT of LAT scout. Through concatenation the shape of the training image pair 

is represented by a 34 dimensional vector v = [LAP, LLAT]T, where 

LA P= x1
AP, z1

AP, ⋯, x21
AP, z21

AP  s the set of 2D coordinates of landmarks in IAP and 

LLAT = y1
LAT, z1

LAT, …, y13
LAT, z13

LAT  is the set for ILAT. To obtain the associated appearance 

information, we construct two triangulated meshes based on these landmarks, one on AP 

view and one on LAT view (see Fig. 3a). The region inside the mesh is taken as the ROI. A 

global AAM model is then trained from the v and the ROI of the training images, which 

encodes the intensity texture from both AP and LAT scouts. Figure 3(b and c) show the 

constructed mean shape and the mean appearance of the joint model, respectively. The joint 

global model captures the probabilistic correlation between structures in both views, which 

helps infer obscured shapes from other parts and is less sensitive to initialization errors 

though less flexible than two individual scout models.

In subsequent finer levels of the pyramid, sub-models are trained using scout specific 

vertices from the global model, allowing better description of local structures and reducing 

the chance of over-constrained by learning variations in a single view. Figure 3d shows the 

constructed AP only sub-model. The following section shows how hierarchical model fitting 

helps localize organs in AP and LAT views.

Hierarchical Model Fitting.—Our model fitting workflow is illustrated in Fig. 3e. 

Initialized to landmark consensus detection results, a joint model incorporating feature 

points from both AP and LAT scout images is simultaneously fitted to the AP/LAT image 

pair (Fig. 3e, box 4). Next the localization result on the AP image is refined by applying a 

sub-model learned from AP images, which is initialized by previous joint model fitting 

results (Fig. 3e, box 5). We only apply the sub-model for AP scouts because in practice, AP 

images have more reliable features since the projection image is formed from less tissue 

overlap than LAT images. Since LAT images have greater structure occlusion more 

constraints are required to infer organ locations. To further refine LAT locations, we fit a 

joint model again, during which we leave the AP landmarks fixed. These points serve as 

reliable “anchor” points, enforcing contextual constraints for LAT landmark refinement.

3 Experiments and Results

We evaluate our approach on 93 subjects from whom both AP and LAT scout images were 

acquired using four-fold cross validation, i.e. 70 subjects for training and the remainder for 

testing in each fold. The image size ranges from 888 × 660 pixels to 888 × 1026 pixels for 

AP scout, and 888 × 660 pixels to 888 × 935 pixels for LAT scout. The resolution is 0.60 × 

0.55 mm for both scouts. The subjects vary in age, gender, and pathology including obesity 

(Fig. 1b), lung cancer, and cardiomyopathy. Additional variability includes metallic 

implants: cardiac stents, hip implants, and jewelry (Fig. 1a, c). Acquisition protocol 
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variations include large variation in the Z range and patient positioning, e.g. arm position 

(Fig. 1a, d).

Qualitative Evaluation.

In Fig. 4a, we compare landmark detection results using separate consensus detection, (top), 

with those from joint consensus detection, (bottom). True landmarks are shown in dark blue 

X’s, those detected by the method are shown as green and yellow X’s, while those inferred 

using these detections are light blue. Differences are highlighted in yellow; the detection and 

the corresponding true location are enclosed by a yellow ellipse. We observe these ellipses 

are much smaller using joint consensus detection than separate detection, indicating higher 

landmark accuracy. In further analysis we found that every LAT landmark has improved 

mean accuracy. Figure 4b–d show comparative organ localization results. The fitting results 

are shown in cyan dashes with right lung (green), left lung (blue), chest cavity (orange) and 

heart (red). The ground-truth is marked by yellow dash. We observe the joint model yields 

significant improvement (Fig. 4c) over the single view processing (Fig. 4b) and is further 

improved by enforcing a joint hierarchical model fitting structure (Fig. 4d).

Quantitative Evaluation.

The mean landmark distance error between computed and manually labelled landmarks 

across all 93 test images is shown in Fig. 5a. Compared to separate view consensus 

detection, our proposed joint view approach reduces distance error from 12.7 mm to 11.2 

mm for AP view and from 27.3 mm to 15.7mm for LAT view. Joint consensus detection 

without AAM fitting maintains AP landmarks at 22.3mm while dramatically reducing error 

(by >14mm) for LAT view from 32.0 mm to 17.3 mm. Joint hierarchical AAM reduces 

overall distance error for AP and LAT, including from 14.0 mm to 11.2 mm for AP and from 

17.3 mm to 15.7 mm for LAT compared to joint model fitting only.

A potential application of our method is to determine the bounding box of the heart for 

cardiac scan range planning. To evaluate method suitability we compare the smallest 

rectangle containing all landmarks along the heart boundary to heart bounding boxes 

manually defined by physicians. The unsigned distance errors of the box sides are shown in 

Fig. 5b–c. Our method improves bottom and all four sides in AP and LAT scouts 

respectively. Improvement of the bottom side is particularly noteworthy given the high organ 

occlusion there.

Processing the images at full resolution, landmark detection and joint consensus detection 

takes about 25 s while joint H-AAM requires about 30 s with a modern desktop computer 

(4–8 core, 8 GB RAM). Further speedup is achievable through multi-resolution processing.

4 Discussion and Conclusions

In this work we address the challenging task of parsing AP and LAT radiographs into salient 

anatomic structures. To the best of our knowledge, this work is the first to jointly leverage 
information from AP and LAT scouts to delineate the heart and lungs. We demonstrate that 

fitting a coarser initial joint hierarchical AAM across AP/LAT views reliably refines the 

consensus landmark detection results. Further, finer single-view-only models can be 
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subsequently applied for a final round of refinement. Using joint landmark detection and 

joint H-AAM fitting reduces mean distance error in LAT landmarks from 27.3 to 15.7mm. 

This is an improvement of over 40 percent compared to using only LAT scout scans, where 

features are inherently more difficult to localize due to greater overlap of structures. Lastly, 

compared to separate view processing, our joint view approach reduces overall mean 

landmark distance error from 12.7 mm to 11.2 mm in the AP view and from 27.3 mm to 

15.7 mm in LAT view. For the AP scout our error of 11.2 mm compares well to the mean 

human expert inter-observer variability of 10.2 mm while our error for the LAT scout of 15.7 

mm compares to the human inter-observer error of 14.3 mm. These inter observer errors 

were computed using manual landmark estimates obtained from two independent observers. 

Our algorithm achieves a level of accuracy sufficient to enable clinically relevant tasks such 

as reducing radiation for the patient through personalized scan planning and to facilitate 

consistent longitudinal scanning in the clinic, and such clinical productization has already 

begun.
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Fig. 1. 
Image analysis challenges and proposed solution. (a–d) Image paris consist of AP (left) and 

LAT (right) views. (e) Our method consists of two steps: joint landmark set detection 

followed by joint H-AAM organ localization.
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Fig. 2. 
Joint landmark set detection. (a) Landmark detectors scan input images producing landmark 

candidates; then a joint consensus detector corrects false positives and negatives. (b, c) 

Detectors are trained from positive and negative landmark patches dropped from images 

with manually labeled landmarks on lung and heart boundaries. (d) Haar image features (e) 

Rejection cascade based detectors.
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Fig. 3. 
(a) Triangulated meshes from manually-annotated landmarks give rough locations of lungs 

(green, blue, orange) and heart (red). (b) Mean joint shape model. (c) Mean joint appearance 

model. (d) Mean shape and appearance AP sub-model. (e) Joint H-AAM fitting workflow 

(Color figure online).
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Fig. 4. 
Impact of joint AP/LAT view processing. (a) Separate detection results (top) have larger 

landmark errors than joint consensus detection (bottom) for landmarks (red #). (b)–(d) Each 

step in which we fit our AAM model (shown with red, blue, green, cyan lines) improves 

fidelity to ground-truth (yellow dash). Compare fitting improvements (purple arrows) among 

(b) single view AAM; (c) joint view AAM and (d) joint H-AAM (Color figure online).
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Fig. 5. 
Cross-validation results from 93 subjects. Proposed joint AP/LAT view approach achieves 

lowest distance error (a) and heart bounding-box distance error (b, c).
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