Abstract
When a novel research topic emerges, we are interested in discovering how the topic will propagate over the bibliography network, i.e., which author will research and publish about this topic. Inferring the underlying influence network among authors is the basis of predicting such topic adoption. Existing works infer the influence network based on past adoption cascades, which is limited by the amount and relevance of cascades collected. This work hypothesizes that the influence network structure and probabilities are the results of many factors including the social relationships and topic popularity. These heterogeneous information shall be optimized to learn the parameters that define the homogeneous influence network that can be used to predict future cascade. Experiments using DBLP data demonstrate that the proposed method outperforms the algorithm based on traditional cascade network inference in predicting novel topic adoption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gomez-Rodriguez, M., Balduzzi, D., Schölkopf, B.: Uncovering the temporal dynamics of diffusion networks. In: International Conference on Machine Learning, pp. 561–568 (2011)
Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. ACM Trans. Knowl. Discov. Data 5(4), 21:1–21:37 (2012)
Ji, M., Han, J., Danilevsky, M.: Ranking-based classification of heterogeneous information networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 1298–1306. ACM, New York (2011)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)
Myers, S.A., Leskovec, J.: On the convexity of latent social network inference. In: Advances in Neural Information Processing Systems, pp. 1741–1749 (2010)
Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship prediction in heterogeneous bibliographic networks. In: Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, pp. 121–128. IEEE Computer Society, Washington, DC (2011)
Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen?: relationship prediction in heterogeneous information networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM 2012, pp. 663–672. ACM, New York (2012)
Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. PVLDB 4(11), 992–1003 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cui, B., Yang, S.J. (2014). Who Will Follow a New Topic Tomorrow?. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2014. Lecture Notes in Computer Science, vol 8393. Springer, Cham. https://doi.org/10.1007/978-3-319-05579-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-05579-4_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05578-7
Online ISBN: 978-3-319-05579-4
eBook Packages: Computer ScienceComputer Science (R0)