Abstract
In this paper, we propose a seven-link passivity-based dynamic walking model, in order to further understand the principles of real human walking and provide guidance in building bipedal robots. The model includes an upper body, two thighs, two shanks, flat feet and compliant joints. A bio-inspired central pattern generator (CPG)-based control method is applied to the proposed model. In addition, we add adaptable joint stiffness to the motion control. To validate the effectiveness of the proposed bipedal walking model, we carried out simulations and human walking experiments. Experimental results indicate that human-like walking gaits with different speeds and walking pattern transitions can be realized in the proposed locomotor system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of the Honda Humanoid robot. In: Proc. of the IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, pp. 1321–1326 (1998)
McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 68–82 (1990)
Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)
Wisse, M., Hobbelen, D.G.E., Schwab, A.L.: Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Trans. Robot. 23(1), 112–123 (2007)
Borzova, E., Hurmuzlu, Y.: Passively walking five-link robot. Automatica 40, 621–629 (2004)
Kwan, M., Hubbard, M.: Optimal foot shape for a passive dynamic biped. J. Theor. Biol. 248, 331–339 (2007)
Wang, Q., Huang, Y., Zhu, J., Wang, L., Lv, D.: Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body. Int. J. Humanoid Robotics 7(2), 295–313 (2010)
Hobbelen, D.G.E., Wisse, M.: Controlling the walking speed in limit cycle walking. Int. J. Robot. Res. 27(9), 989–1005 (2008)
Wang, Q., Huang, Y., Wang, L.: Passive dynamic walking with flat feet and ankle compliance. Robotica 28, 413–425 (2010)
Huang, Y., Wang, Q., Chen, B., Xie, G., Wang, L.: Modeling and gait selection of passivity-based seven-link bipeds with dynamic series of walking phases. Robotica 30, 39–51 (2012)
Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., Lefeber, D.: Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles. Adv. Robotics 22(10), 1027–1051 (2008)
Ishikawa, M., Komi, P.V., Grey, M.J., Lepola, V., Bruggemann, G.: Muscle-tendon interaction and elastic energy usage in human walking. J. Appl. Physiol. 99, 603–608 (2005)
Hobbelen, D.G.E., Wisse, M.: Ankle actuation for limit cycle walkers. Int. J. Robot. Res. 27(6), 709–735 (2008)
Owaki, D., Osuka, K., Ishiguro, A.: On the embodiment that enables passive dynamic bipedal running. In: Proc. of the IEEE Int. Conf. Robotics and Automation, Pasadena, CA, USA, pp. 341–346 (2008)
Huang, Y., Vanderborght, B., Van Ham, R., Wang, Q., Van Damme, M., Xie, G., Lefeber, D.: Step length and velocity control of a dynamic bipedal walking robot with adaptable compliant joints. IEEE-ASME Trans. Mechatron. 18, 598–611 (2013)
Taga, G., Yamaguehi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)
Verdaasdonk, B.W., Koopman, H.F.J.M., van der Helm, F.C.T.: Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol. Cybern. 101, 49–61 (2009)
Owaki, D., Kano, T., Tero, A., Akiyama, M., Ishiguro, A.: Minimalist CPG model for inter- and intra-limb coordination in bipedal locomotion. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 194, pp. 493–502. Springer, Heidelberg (2013)
Amemiya, M., Yamaguchi, T.: Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. Neurosci. Lett. 50, 91–96 (1984)
Cazalets, J.R., Borde, M., Clarac, F.: Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J. Neurosci. 15, 4943–4951 (1995)
Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)
Grillner, S., Georgopoulos, A.P., Jordan, L.M.: Selection and initiation of motor behavior. In: Stein, P.S.G., Grillner, S., Selverston, A., Stuart, D.G. (eds.) Neurons, Networks and Motor Behavior. MIT Press (1997)
Frigo, C., Crenna, P., Jensen, L.M.: Moment-angle relationship at lower limb joints during human walking at different velocities. J. Electromyogr. Kines. 6, 177–190 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Huang, Y., Gao, Y., Chen, B., Wang, Q., Wang, L. (2014). Adding Adaptable Stiffness Joints to CPG-Based Dynamic Bipedal Walking Generates Human-Like Gaits. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-05582-4_49
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05581-7
Online ISBN: 978-3-319-05582-4
eBook Packages: EngineeringEngineering (R0)