Skip to main content

Adding Adaptable Stiffness Joints to CPG-Based Dynamic Bipedal Walking Generates Human-Like Gaits

  • Chapter
Robot Intelligence Technology and Applications 2

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 274))

  • 4218 Accesses

Abstract

In this paper, we propose a seven-link passivity-based dynamic walking model, in order to further understand the principles of real human walking and provide guidance in building bipedal robots. The model includes an upper body, two thighs, two shanks, flat feet and compliant joints. A bio-inspired central pattern generator (CPG)-based control method is applied to the proposed model. In addition, we add adaptable joint stiffness to the motion control. To validate the effectiveness of the proposed bipedal walking model, we carried out simulations and human walking experiments. Experimental results indicate that human-like walking gaits with different speeds and walking pattern transitions can be realized in the proposed locomotor system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of the Honda Humanoid robot. In: Proc. of the IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, pp. 1321–1326 (1998)

    Google Scholar 

  2. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 68–82 (1990)

    Article  Google Scholar 

  3. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  4. Wisse, M., Hobbelen, D.G.E., Schwab, A.L.: Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Trans. Robot. 23(1), 112–123 (2007)

    Article  Google Scholar 

  5. Borzova, E., Hurmuzlu, Y.: Passively walking five-link robot. Automatica 40, 621–629 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kwan, M., Hubbard, M.: Optimal foot shape for a passive dynamic biped. J. Theor. Biol. 248, 331–339 (2007)

    Article  Google Scholar 

  7. Wang, Q., Huang, Y., Zhu, J., Wang, L., Lv, D.: Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body. Int. J. Humanoid Robotics 7(2), 295–313 (2010)

    Article  Google Scholar 

  8. Hobbelen, D.G.E., Wisse, M.: Controlling the walking speed in limit cycle walking. Int. J. Robot. Res. 27(9), 989–1005 (2008)

    Article  Google Scholar 

  9. Wang, Q., Huang, Y., Wang, L.: Passive dynamic walking with flat feet and ankle compliance. Robotica 28, 413–425 (2010)

    Article  Google Scholar 

  10. Huang, Y., Wang, Q., Chen, B., Xie, G., Wang, L.: Modeling and gait selection of passivity-based seven-link bipeds with dynamic series of walking phases. Robotica 30, 39–51 (2012)

    Article  Google Scholar 

  11. Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., Lefeber, D.: Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles. Adv. Robotics 22(10), 1027–1051 (2008)

    Article  Google Scholar 

  12. Ishikawa, M., Komi, P.V., Grey, M.J., Lepola, V., Bruggemann, G.: Muscle-tendon interaction and elastic energy usage in human walking. J. Appl. Physiol. 99, 603–608 (2005)

    Article  Google Scholar 

  13. Hobbelen, D.G.E., Wisse, M.: Ankle actuation for limit cycle walkers. Int. J. Robot. Res. 27(6), 709–735 (2008)

    Article  Google Scholar 

  14. Owaki, D., Osuka, K., Ishiguro, A.: On the embodiment that enables passive dynamic bipedal running. In: Proc. of the IEEE Int. Conf. Robotics and Automation, Pasadena, CA, USA, pp. 341–346 (2008)

    Google Scholar 

  15. Huang, Y., Vanderborght, B., Van Ham, R., Wang, Q., Van Damme, M., Xie, G., Lefeber, D.: Step length and velocity control of a dynamic bipedal walking robot with adaptable compliant joints. IEEE-ASME Trans. Mechatron. 18, 598–611 (2013)

    Article  Google Scholar 

  16. Taga, G., Yamaguehi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  17. Verdaasdonk, B.W., Koopman, H.F.J.M., van der Helm, F.C.T.: Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol. Cybern. 101, 49–61 (2009)

    Article  MATH  Google Scholar 

  18. Owaki, D., Kano, T., Tero, A., Akiyama, M., Ishiguro, A.: Minimalist CPG model for inter- and intra-limb coordination in bipedal locomotion. In: Lee, S., Cho, H., Yoon, K.-J., Lee, J. (eds.) Intelligent Autonomous Systems 12. AISC, vol. 194, pp. 493–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Amemiya, M., Yamaguchi, T.: Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. Neurosci. Lett. 50, 91–96 (1984)

    Article  Google Scholar 

  20. Cazalets, J.R., Borde, M., Clarac, F.: Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J. Neurosci. 15, 4943–4951 (1995)

    Google Scholar 

  21. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  22. Grillner, S., Georgopoulos, A.P., Jordan, L.M.: Selection and initiation of motor behavior. In: Stein, P.S.G., Grillner, S., Selverston, A., Stuart, D.G. (eds.) Neurons, Networks and Motor Behavior. MIT Press (1997)

    Google Scholar 

  23. Frigo, C., Crenna, P., Jensen, L.M.: Moment-angle relationship at lower limb joints during human walking at different velocities. J. Electromyogr. Kines. 6, 177–190 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, Y., Gao, Y., Chen, B., Wang, Q., Wang, L. (2014). Adding Adaptable Stiffness Joints to CPG-Based Dynamic Bipedal Walking Generates Human-Like Gaits. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05582-4_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05581-7

  • Online ISBN: 978-3-319-05582-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics