Abstract
In this chapter, we will present a proposal for the cloud – based object recognition system. The system will extract the local features from the image and classify the object on the image using Membership Function ARTMAP (MF ARTMAP) or Gaussian Random Markov Field model. The feature extraction will be based on SIFT, SURF and ORB methods. Whole system will be built on the cloud architecture, to be readily available for the needs of the new emerging technological field of cloud robotics. Besides the system proposal, we specified research and technical goals for the following research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Google Apps, http://www.google.com/enterprise/apps/ (accessed June 5, 2013)
Microsoft Office 365, http://office.microsoft.com/en-001/ (accessed July 24, 2013)
Guizzo, E.: Robots With Their Heads in the Clouds. IEEE Spectrum (February 28, 2011)
Inaba, M.: Remote-brained humanoid project. Advanced Robotics 11(6), 605–620 (1996)
Foster, I.T., Zhao, Y., Raicu, I., Shiyong, L.: Cloud Computing and Grid Computing 360-Degree Compared. In: 2008 Grid Computing Environments Workshop, pp. 1–10 (2008)
Mell, P., Grance, T.: The NIST Definition of Cloud Computing Recommendations of the National Institute of Standards and Technology. Nist Special Publication 145, 7 (2011)
DropBox, http://www.dropbox.com/ (accessed June 3, 2013)
SkyDrive, https://skydrive.live.com/ (accessed June 5, 2013)
netduino, http://www.netduino.com/ (accessed July 22, 2013)
Raspberry Pi, http://www.raspberrypi.org/ (accessed July 22, 2013)
Romo, http://romotive.com/ (accessed July 25, 2013)
SmartBot, http://www.overdriverobotics.com/SmartBot/ (Accessed July 25, 2013)
Ferraté, T.: Cloud Robotics - new paradigm is near. Robotica Educativa y Personal (January 20, 2013)
Chen, Y., Du, Z., García-Acosta, M.: Robot as a Service in Cloud Computing. In: 2010 Fifth IEEE International Symposium on Service Oriented System Engineering, pp. 151–158 (June 2010)
Arumugam, R., Enti, V.R., Baskaran, K., Kumar, A.S.: DAvinCi: A cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation, pp. 3084–3089 (2010)
MyRobots.com, http://myrobots.com (accessed June 8, 2013)
Li, H.: A*Star Social Robotics, http://www.asoro.a-star.edu.sg/index.html (accessed June 13, 2013)
RoboEarth Project, http://www.roboearth.org/ (accessed June 3, 2013)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
Yu, G., Morel, J.-M.: A Fully Affine Invariant Image Comparison Method. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1597–1600 (2009)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)
Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 105–119 (2010)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Sinčák, P., Hric, M., Vaščák, J.: Membership Function-ARTMAP Neural Networks. TASK Quarterly 7(1), 43–52 (2003)
Smolár, P.: Object Categorization using ART Neural Networks. Technical University of Kosice (2012)
Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a self-organizing neural network. Computer 21(3), 77–88 (1988)
Carpenter, G.A., Grossberg, S.: Adaptive Resonance Theory. MIT Press, Boston (2003)
Cohen, F.S., Fan, Z., Patel, M.A.: Classification of rotated and scaled textured images using Gaussian Markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(2), 192–202 (1991)
Rellier, G., Descombes, X., Falzon, F., Zerubia, J.: Texture feature analysis using a gauss-Markov model in hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 42(7), 1543–1551 (2004)
Berthod, M., Kato, Z., Yu, S., Zerubia, J.: Bayesian image classification using Markov random fields. Image and Vision Computing 14(4), 285–295 (1996)
Gopinath, R.A.: Maximum likelihood modeling with Gaussian distributions for classification. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998 (Cat. No.98CH36181) 2(914), 661–664 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Lorencik, D., Tarhanicova, M., Sincak, P. (2014). Cloud-Based Object Recognition: A System Proposal. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_61
Download citation
DOI: https://doi.org/10.1007/978-3-319-05582-4_61
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05581-7
Online ISBN: 978-3-319-05582-4
eBook Packages: EngineeringEngineering (R0)