Abstract
Numerous causal structure discovery methods have been proposed recently but none of them has taken possible time-varying structure into consideration. In this paper, we introduce a notion of causal time-varying dynamic Bayesian network (CTV-DBN) and define a causal boundary to govern cross time information sharing. Although spatio-temporal data have been investigated by multiple disciplines; by reducing structure discovery into a set of optimization problems, CTV-DBN is a scalable solution targeting large datasets. CTV-DBN is constructed using asymmetric kernels to address sample scarcity and to adhere to causal principles; while maintaining good variance and bias trade-off. We explore trajectory data collected from mobile devices which are known to exhibit heterogeneous patterns, data sparseness and distribution skewness. Contrary to a naïve method to divide space by grids, we capture the moving objects’ view of space by using density-based clustering to overcome the problems. In our experiments, CTV-DBN is used to reveal the evolution of time-varying region macro structure in a ring road system based on trajectories, and to obtain a local time-varying road junction dependency structure based on static traffic flow sensor data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: SIGMOD Conference, pp. 49–60 (1999)
Aurenhammer, F., Klein, R.: Voronoi Diagrams, ch. 5, pp. 201–290. Elsevier Science, Amsterdam (2000)
Bain, L.J., Engelhardt, M.: Introduction to probability and mathematical statistics, vol. 4. Duxbury Press, Belmont (1992)
Birant, D., Kut, A.: ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)
Chawla, S., Zheng, Y., Hu, J.: Inferring the root cause in road traffic anomalies. In: ICDM, pp. 141–150 (2012)
Clarke, H., Hawkins, A.: Economic framework for melbourne traffic planning. Agenda 13(1), 63–80 (2006)
Dondelinger, F., Lèbre, S., Husmeier, D.: Non-homogeneous dynamic bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Machine Learning 90(2), 191–230 (2013)
Ester, M., Peter Kriegel, H., J.S, Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)
Gospodinov, N., Hirukawa, M.: Time series nonparametric regression using asymmetric kernels with an application to estimation of scalar diffusion processes (2008)
Gospodinov, N., Hirukawa, M.: Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels. Journal of Empirical Finance (2012)
Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian networks. In: NIPS, pp. 682–690 (2009)
Grzegorczyk, M., Husmeier, D.: Non-homogeneous dynamic Bayesian networks for continuous data. Machine Learning 83(3), 355–419 (2011)
Hall, P., Wehrly, T.E.: A geometrical method for removing edge effects from kernel-type nonparametric regression estimators. Journal of the American Statistical Association 86(415), 665–672 (1991)
Hou, X., Zhang, J., Du, C., Zhang, L.: Research the influence of the ring road factor on route choice. In: 2009 17th International Conference on Geoinformatics, pp. 1–6. IEEE (2009)
Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment 1(1), 1068–1080 (2008)
Kisilevich, S., Mansmann, F., Nanni, M., Rinzivillo, S.: Spatio-temporal clustering. In: Data Mining and Knowledge Discovery Handbook, pp. 855–874 (2010)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)
Lemmer, J.F.: The causal Markov condition, fact or artifact? SIGART Bulletin 7(3), 7–3 (1996)
Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data streams. In: KDD, pp. 1010–1018 (2011)
Liu, Y., Niculescu-Mizil, A., Lozano, A.C., Lu, Y.: Learning temporal causal graphs for relational time-series analysis. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 687–694 (2010)
Lu, C.-T., Lei, P.-R., Peng, W.-C., Su, I.-J.: A framework of mining semantic regions from trajectories. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587, pp. 193–207. Springer, Heidelberg (2011)
Mackenzie, M., Tieu, A.K.: Asymmetric kernel regression. IEEE Transactions on Neural Networks 15(2), 276–282 (2004)
Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, Computer Science Division (2002)
Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)
Robinson, J.W., Hartemink, A.J.: Non-stationary dynamic Bayesian networks. In: NIPS, pp. 1369–1376 (2008)
Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian networks. Journal of Machine Learning Research 11, 3647–3680 (2010)
Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic bayesian networks. In: NIPS, pp. 1732–1740 (2009)
Spirtes, P.: Introduction to causal inference. Journal of Machine Learning Research 11, 1643–1662 (2010)
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press (2000)
Wang, M., Wang, A., Li, A.: Mining spatial-temporal clusters from geo-databases. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 263–270. Springer, Heidelberg (2006)
Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio-temporally correlated time series using markov models. Proceedings of the VLDB Endowment, 6 (2013)
Zhang, S., Karunamuni, R., Jones, M.: An improved estimator of the density function at the boundary. Journal of the American Statistical Association 94(448), 1231–1240 (1999)
Zhao, P., Lu, B., de Roo, G.: The impact of urban growth on commuting patterns in a restructuring city: Evidence from Beijing. Papers in Regional Science 90(4), 735–754 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chu, V.W., Wong, R.K., Liu, W., Chen, F. (2014). Causal Structure Discovery for Spatio-temporal Data. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science, vol 8421. Springer, Cham. https://doi.org/10.1007/978-3-319-05810-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-05810-8_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05809-2
Online ISBN: 978-3-319-05810-8
eBook Packages: Computer ScienceComputer Science (R0)