Abstract
Uncertainty is inherent in many important applications, such as data integration, environmental surveillance, location-based services (LBS), sensor monitoring and radio-frequency identification (RFID). In recent years, we have witnessed significant research efforts devoted to producing probabilistic database management systems, and many important queries are re-investigated in the context of uncertain data models. In the paper, we study the problem of top k dominating query on multi-dimensional uncertain objects, which is an essential method in the multi-criteria decision analysis when an explicit scoring function is not available. Particularly, we formally introduce the top k dominating model based on the state-of-the-art top k semantic over uncertain data. We also propose effective and efficient algorithms to identify the top k dominating objects. Novel pruning techniques are proposed by utilizing the spatial indexing and statistic information, which significantly improve the performance of the algorithms in terms of CPU and I/O costs. Comprehensive experiments on real and synthetic datasets demonstrate the effectiveness and efficiency of our techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001 (2001)
Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: Efficiently processing reverse k nearest neighbors queries. In: ICDE, pp. 577–588 (2011)
Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data and expected ranks. In: ICDE (2009)
Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB J. 16(4), 523–544 (2007)
Feng, X., Zhao, X., Gao, Y., Zhang, Y.: Probabilistic top-k dominating query over sliding windows. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.) APWeb 2013. LNCS, vol. 7808, pp. 782–793. Springer, Heidelberg (2013)
Ge, T., Zdonik, S., Madden, S.: Top-k queries on uncertain data: On score distribution and typical answers. In: SIGMOD (2009)
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)
Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: A probabilistic threshold approach. In: SIGMOD (2008)
Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic databases. VLDB J. 20(2) (2011)
Lian, X., Chen, L.: Top-k dominating queries in uncertain databases. In: EDBT, pp. 660–671 (2009)
Lian, X., Chen, L.: Probabilistic top-k dominating queries in uncertain databases. Inf. Sci. 226, 23–46 (2013)
Lin, X., Zhang, Y., Zhang, W., Cheema, M.A.: Stochastic skyline operator. In: ICDE, pp. 721–732 (2011)
Meester, R.: A Natural Introduction to Probability Theory (2004)
Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient olap operations in spatial data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1) (2005)
Soliman, M.A., Ilyas, I.F., Chang, K.C.: Top-k query processing in uncertain databases. In: ICDE 2007 (2007)
Tiakas, E., Papadopoulos, A.N., Manolopoulos, Y.: Progressive processing of subspace dominating queries. VLDB J. 20(6), 921–948 (2011)
Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-dimensional data. In: VLDB, pp. 483–494 (2007)
Yiu, M.L., Mamoulis, N.: Multi-dimensional top-k dominating queries. VLDB J. 18(3), 695–718 (2009)
Zhang, W., Lin, X., Zhang, Y., Pei, J., Wang, W.: Threshold-based probabilistic top-k dominating queries. VLDB J. 19(2), 283–305 (2010)
Zhang, Y., Lin, X., Tao, Y., Zhang, W.: Uncertain location based range aggregates in a multi-dimensional space. In: ICDE, pp. 1247–1250 (2009)
Zhang, Y., Lin, X., Zhu, G., Zhang, W., Lin, Q.: Efficient rank based knn query processing over uncertain data. In: ICDE (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhan, L., Zhang, Y., Zhang, W., Lin, X. (2014). Identifying Top k Dominating Objects over Uncertain Data. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds) Database Systems for Advanced Applications. DASFAA 2014. Lecture Notes in Computer Science, vol 8421. Springer, Cham. https://doi.org/10.1007/978-3-319-05810-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-05810-8_26
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05809-2
Online ISBN: 978-3-319-05810-8
eBook Packages: Computer ScienceComputer Science (R0)