Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 555))

Abstract

Impressions of footwear are commonly found in crime scenes. Yet they are not routinely used as evidence due to: (i) the wide variability and quality of impressions, and (ii) the large number of footwear outsole designs which makes their manual comparison time-consuming and difficult. Computational methods hold the promise of better use of footwear evidence in investigations and also in providing assistance for court testimony. This paper begins with a comprehensive survey of existing methods, followed by identifying several gaps in technology. They include methods to improve image quality, computing features for comparison, measuring the degree of similarity, retrieval of closest prints from a database and determining the degree of uncertainty in identification. New algorithms for each of these problems are proposed. An end-to-end system is proposed where : (i) the print is represented by an attribute relational graph of straight edges and ellipses, (ii) a distance measure based on the earth-mover distance, (iii) clustering to speed-up database retrieval, and (iv) uncertainty evaluation based on likelihoods. Retrieval performance of the proposed design with real crime scene images is evaluated and compared to that of previous methods. Suggestions for further work and implications to the justice system are given.

This work was supported by the Office of Justice Programs, US Department of Justice on NIJ Award 2007-DN-BX-K135. The opinions expressed are those of the authors and not of the DoJ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodziak, W.: Footwear Impression Evidence Detection, Recovery and Examination, 2nd edn. CRC Press (2000)

    Google Scholar 

  2. Stone, R.S.: Footwear examinations: Mathematical probabilities of theoretical individual characteristics. Journal of Forensic Identification 56, 577–599 (2006)

    Google Scholar 

  3. Geradts, Z., Keijzer, J.: The image-database REBEZO for shoeprints with developments on automatic classification of shoe outsole designs. Forensic Science International 82, 21–31 (1996)

    Article  Google Scholar 

  4. Alexander, A., Bouridane, A., Crookes, D.: Automatic classification and recognition of shoeprints. In: Proc. Seventh Internationl Conference Image Processing and Its Applications, vol. 2, pp. 638–641 (1999)

    Google Scholar 

  5. Girod, A.: Computerized classification of the shoeprints of burglar’s shoes. Forensic Science International 1, 59–65 (1982)

    Google Scholar 

  6. Bouridane, A., Alexander, A., Nibouche, M., Crookes, D.: Application of fractals to the detection and classification of shoeprints. In: Proceedings International Conference Image Processing, vol. 1, pp. 474–477 (2000)

    Google Scholar 

  7. Sawyer, N.: SHOE-FIT: A computerised shoe print database. In: Proc. European Convention on Security and Detection (1995)

    Google Scholar 

  8. Ashley, W.: What shoe was that? the use of computerised image database to assist in identification. Forensic Science Int. 82(1), 7–20 (1996)

    Article  Google Scholar 

  9. Foster, Freeman: Solemate (2010), http://fosterfreeman.com

  10. Bouridane, A.: Imaging for Forensics and Security: From Theory to Practice, 1st edn. Springer (2009)

    Google Scholar 

  11. de Chazal, P., Flynn, J., Reilly, R.B.: Automated processing of shoeprint images based on the Fourier transform for use in forensic science. IEEE Trans. Pattern Anal. Mach. Intell 27, 341–350 (2005)

    Article  Google Scholar 

  12. Zhang, L., Allinson, N.: Automatic shoeprint retrieval system for use in forensic investigations. In: UK Workshop on Computational Intelligence (2005)

    Google Scholar 

  13. Pavlou, M., Allinson, N.M.: Automatic extraction and classification of footwear patterns. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 721–728. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Crookes, D., Bouridane, A., Su, H., Gueham, M.: Following the footsteps of others: Techniques for automatic shoeprint classification. In: Second NASA/ESA Conference on Adaptive Hardware and Systems, pp. 67–74 (2007)

    Google Scholar 

  15. Gueham, M., Bouridane, A., Crookes, D.: Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  16. Patil, P.M., Kulkarni, J.V.: Rotation and intensity invariant shoeprint matching using gabor transform with application to forensic science. Pattern Recognition 42, 1308–1317 (2009)

    Article  Google Scholar 

  17. Dardi, F., Cervelli, F., Carrato, S.: A texture based shoe retrieval system for shoe marks of real crime scenes. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 384–393. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Tang, Y., Srihari, S.N., Kasiviswanthan, H.: Similarity and clustering of footwear prints. In: IEEE Symposium on Foundations and Practice of Data Mining (GrC 2010). IEEE Computer Society Press (2010)

    Google Scholar 

  19. Tang, Y., Srihari, S.N.: Ellipse detection using sampling constraints. In: Proc. IEEE Int. Conf. Image Proc., IEEE Computer Society Press (2011)

    Google Scholar 

  20. Mikkonen, S., Astikainenn, T.: Database classification system for shoe sole patterns - identification of partial footwear impression found at a scene of crime. Journal of Forensic Science 39(5), 1227–1236 (1994)

    Google Scholar 

  21. Huynh, C., de Chazal, P., McErlean, D., Reilly, R., Hannigan, T., Fleud, L.: Automatic classification of shoeprints for use in forensic science based on the Fourier transform. In: Proc. 2003 International Conference Image Processing, vol. 3, pp. 569–572 (2003)

    Google Scholar 

  22. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on Pattern Analysis and Machine Intel. 27, 1615–1630 (2005)

    Article  Google Scholar 

  23. Ghouti, L., Bouridane, A., Crookes, D.: Classification of shoeprint images using directional filter banks. In: International Conference on Visual Information Engineering, pp. 167–173 (2006)

    Google Scholar 

  24. Su, H., Crookes, D., Bouridane, A.: Thresholding of noisy shoeprint images based on pixel context. Pattern Recognition Letters 28(2), 301–307 (2007)

    Article  Google Scholar 

  25. Sun, W., Taniar, D., Torabi, T.: Image mining: A case for clustering shoe prints. International Journal of Information Technology and Web Engineering 3, 70–84 (2008)

    Article  Google Scholar 

  26. AlGarni, G., Hamiane, M.: A novel technique for automatic shoeprint image retrieval. Forensic Science International 181, 10–14 (2008)

    Article  Google Scholar 

  27. Xiao, R., Shi, P.-f.: Computerized matching of shoeprints based on sole pattern. In: Srihari, S.N., Franke, K. (eds.) IWCF 2008. LNCS, vol. 5158, pp. 96–104. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Jingl, M.Q., Ho, W.J., Chen, L.H.: A novel method for shoeprints recognition and classification. In: International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2846–2851 (2009)

    Google Scholar 

  29. Nibouche, O., Bouridane, A., Gueham, M., Laadjel, M.: Rotation invariant matching of partial shoeprints. In: International Machine Vision and Image Processing Conference, pp. 94–98 (2009)

    Google Scholar 

  30. Cervelli, F., Dardi, F., Carrato, S.: Comparison of footwear retrieval systems for synthetic and real shoe marks. In: Proc. Sixth Intl. Symp. Image and Signal Processing and Analysis, Salzburg, Austria, pp. 684–689 (2009)

    Google Scholar 

  31. Dardi, F., Cervelli, F., Carrato, S.: A combined approach for footwear retrieval of crime scene shoe marks. In: Proc. ICDP 2009, Third International Conference on Imaging for Crime Detection and Prevention, Paper No. P09, London, UK (2009)

    Google Scholar 

  32. Wang, R., Hong, W., Yang, N.: The research on footprint recognition method based on wavelet and fuzzy neural network. In: International Conference on Hybrid Intelligent Systems, pp. 428–432 (2009)

    Google Scholar 

  33. Otsu, N.: A threshold selection method from gray level histogram. IEEE Transaction on Systems, Man and Cybernetics 9, 62–66 (1979)

    Article  Google Scholar 

  34. Ramakrishnan, V., Srihari, S.N.: Extraction of shoeprint patterns from impression evidence using conditional random fields. In: Proceedings of International Conference on Pattern Recognition, Tampa, FL. IEEE Computer Society Press (2008)

    Google Scholar 

  35. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press (2009)

    Google Scholar 

  36. Shetty, S., Srinivasan, H., Beal, M., Srihari, S.: Segmentation and labeling of documents using conditional random fields. In: Document Recognition and Retrieval XIV, vol. 6500, pp. 65000U–1 (2007)

    Google Scholar 

  37. Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: Neural Information Processing Systems, NIPS (2003)

    Google Scholar 

  38. Wallach, H.: Efficient training of conditional random fields. Master’s thesis, University of Edinburgh (2002)

    Google Scholar 

  39. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  40. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 1st edn. Prentice Hall (2003)

    Google Scholar 

  41. Rui, Y., Huang, S., Chang, S.: Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)

    Article  Google Scholar 

  42. Srihari, S.N., Huang, C., Srinivasan, H.: On the discriminability of the handwriting of twins. Journal of Forensic Sciences 53(2), 430–446 (2008)

    Article  Google Scholar 

  43. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  44. Hough, P.: Machine analysis of bubble chamber pictures. In: International Conference on High Energy Accelerators and Instrumentation, CERN (1959)

    Google Scholar 

  45. Srihari, S.N., Govindaraju, V.: Analysis of textual images using the Hough transform. Machine Vision and Applications 2, 141–153 (1989)

    Article  Google Scholar 

  46. Goulermas, J., Liatsis, P.: Incorporating gradient estimations in a circle-finding probabilistic hough transform. Pattern Analysis and Applications 26, 239–250 (1999)

    Article  Google Scholar 

  47. Wu, W.Y., Wang, M.J.J.: Elliptical object detection by using its geometric properties. Pattern Recognition 26, 1499–1509 (1993)

    Article  Google Scholar 

  48. McLaughlin, R.: Randomized Hough transform: better ellipse detection. IEEE TENCON-Digital Signal Processing Applications 1, 409–414 (1996)

    Article  Google Scholar 

  49. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison Wesley (1992)

    Google Scholar 

  50. Bunke, H., Irniger, C., Neuhaus, M.: Graph matching: Challenges and potential solutions. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1–10. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  51. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13, 353–362 (1983)

    Article  MATH  Google Scholar 

  52. Bunke, H., Messmer, B.T.: Efficient attributed graph matching and its application to image analysis. In: Proceedings of the 8th International Conference on Image Analysis and Processing, pp. 45–55 (1995)

    Google Scholar 

  53. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  54. Hillier, F.S., Liebermann, G.J.: Introduction to Mathematical Programming, 2nd edn. McGraw-Hill (1995)

    Google Scholar 

  55. Kim, D.H., Yun, I.D., Lee, S.U.: Attributed relational graph matching algorithm based on nested assignment structure. Pattern Recognition 43, 914–928 (2010)

    Article  MATH  Google Scholar 

  56. Pelillo, M., Siddiqi, K., Zucker, S.W.: Many-to-many matching of attributed trees using association graphs and game dynamics. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 583–593. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  57. Smith, E., Szidarovszky, F., Karnavas, W., Bahill, A.: Sensitivity analysis, a powerful system validation technique. The Open Cybernetics and Systemics Journal 2, 39–56 (2008)

    Article  MathSciNet  Google Scholar 

  58. Aldenderfer, M., Blashfield, R.: Cluster Analysis. SAGE (1984)

    Google Scholar 

  59. Mikkonen, S., Suominen, V., Heinonen, P.: Use of footwear impressions in crime scene investigations assisted by computerised footwear collection system. Forensic Science International 82(1), 67–79 (1996)

    Article  Google Scholar 

  60. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In: Proc. of the Nineteenth International Conference on Machine Learning, pp. 27–34 (2002)

    Google Scholar 

  61. Nixon, M., Aguado, A.: Pattern Extraction and Image Processing. Elsevier Science (2002)

    Google Scholar 

  62. Aitken, C., Taroni, F.: Statistics and the Evaluation of Evidence for Forensic Scientists. Wiley (2004)

    Google Scholar 

  63. Evett, I.: Towards a uniform framework for reporting opinions in forensic science casework. Science and Justice 38(3), 198–202 (1998)

    Article  Google Scholar 

  64. Evett, I., Lambert, J., Buckleton, J.: A Bayesian approach to interpreting footwear marks in forensic casework. Science and Justice 38(4), 241–247 (1998)

    Article  Google Scholar 

  65. Biedermann, A., Taroni, F.: Inadequacies of posterior probabilities for the assessment of scientific evidence. Law, Probability and Risk 4, 89–114 (2005)

    Article  Google Scholar 

  66. Tang, Y., Srihari, S.N.: Likelihood ratio estimation in forensic identification using similarity and rarity. Pattern Recognition 47(3), 945–958 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sargur N. Srihari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srihari, S.N., Tang, Y. (2014). Computational Methods for the Analysis of Footwear Impression Evidence. In: Muda, A., Choo, YH., Abraham, A., N. Srihari, S. (eds) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol 555. Springer, Cham. https://doi.org/10.1007/978-3-319-05885-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05885-6_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05884-9

  • Online ISBN: 978-3-319-05885-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics