Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 555))

  • 1652 Accesses

Abstract

The influence of noise and reverberation in Digital Forensic voice evidence can conceal the identification, verification and processing of crime data. Computationally, the efficiency in processing speech signals largely depends on the integrity and authenticity of audio/voice recordings. Our interest is on improving integrity, vis-à-vis the intelligibility of speech signals. We achieved this in four folds. First, a speech quality enhancement technique that cleans and rebuilds defective speech data for quality Forensic analysis is proposed by exploring an optimal estimator for the magnitude spectrum, where the Discrete Fourier Transform (DFT) coefficients of clean speech are modelled by a Laplacian distribution and the noise DFT coefficients are modelled using a Gaussian distribution. Second, an automatic speech pre-processing algorithm for phoneme segmentation of raw speech data, capable of iteratively refining Hidden Markov Model (HMM) speech labels for improved intelligibility is introduced. Third, a simulation of the distortion from a quantised R-bit and computation of the Signal-to-Noise Ratio (SNR) for the signal to quantisation noise is carried out for the purpose of managing speech signal distortions. Fourth, an investigation of the effect of confused phonemic and tone bearing unit features on the intelligibility of speech is presented to assist Forensic experts decode voice disguise or language “barriers” that may impede proper Forensic voice analysis. Results obtained in this investigation reveal a future of prospects in the field of Forensic intelligence and is most likely to reduce unnecessary setbacks during Forensic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nance, A., Hay, B., Bishop, M.: Digital Forensics: Defining a Research Agenda. In: 42nd Hawaii International Conference on System Sciences, pp. 1–6 (2009)

    Google Scholar 

  2. Ren, W.: Distributed agent-based real time network intrusion Forensics system architecture design. In: 19th International Conference on Advanced Information Networking and Applications, AINA 2005), vol. 1, pp. 177–182 (2005)

    Google Scholar 

  3. Satheesh Kumar, S., Thomas, B., Thomas, K.L.: An agent based tool for windows mobile forensics. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011. LNICST, vol. 88, pp. 77–88. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bhat, V.H., Rao, P.G., Abhilash, R.V., Patnaik, L.M.: A Novel data generation ap-proach for Digital Forensic Application in Data Mining. In: 2nd IEEE International Confer-ence on Machine Learning and Computing, pp. 86–90. IEEE Computer Society (2010)

    Google Scholar 

  5. Morrison, G.S.: Measuring the validity and reliability of Forensic likelihood-ratio systems. Science & Justice 51, 91–98 (2011)

    Article  Google Scholar 

  6. McKenmmish, R.: What is Forensic Computing? In: Trends and Issues in Crime and crimi-nal Justice, pp. 1–6. Australian Institute of Criminology (1999), htttp://www.aic.gov.au

    Google Scholar 

  7. Reilly, D., Wren, C., Berry, T.: Cloud Computing: Pros and cons for Computer Forensic Investigations. Int Journal Multimedia and Image Processing (IJMIP) 1(1), 26–34 (2011)

    Google Scholar 

  8. Rose, P.: Forensic speaker identification. Taylor and Francis, London (2002)

    Book  Google Scholar 

  9. Rose, P.: Technical Forensic speaker recognition: evaluation, types and testing of evidence. Comput Speech Lang 20(2–3), 159–191 (2006)

    Article  Google Scholar 

  10. Raynolds, D.A., Quanteieri, T.F., Dunn, R.B.: Speaker verification using adapted Gaussian mixture models. Digital signal process 10, 19–41 (2000)

    Article  Google Scholar 

  11. De Leon, P.L., Pucher, M., Yamagishi, J., Inma, H., Saratxaga, I.: Evaluation of speaker verification security and detection of HMM-based synthetic speech. IEEE Transactions on Audio, Speech and Language Process 20(8), 2280–2290 (2012)

    Article  Google Scholar 

  12. Lau, Y.W., Wagner, M., Tran, D.: Vulnerability of speaker verification to voice mim-icking. In: International Symposium on Intelligent Multimedia, Video, Speech Process, pp. 145–148 (2004)

    Google Scholar 

  13. Sullivan, K.P.H., Pelecanos, J.: Revisiting carl bildt’s impostor: Would a speaker verification system foil him? In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 144–149. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Zhang, C., Morrison, G.S., Thiruvaran, T.: Forensic voice comparison using Chinese /iau/. In: 17th ICPhS, Hong Kong, China, pp. 2280–2283 (2011)

    Google Scholar 

  15. Huang, C.C., Epps, J.: A study of automatic phonetic segmentation for Forensic voice comparison. In: IEEE International conference on Acoustic, Speech and Signal Process, pp. 1853–1856 (2012)

    Google Scholar 

  16. Kind, S.: The Scientific Investigation of Crime. Forensic Science Services Ltd., Harrogate (1987)

    Google Scholar 

  17. Ribaux, O., Walsh, S.J., Margot, P.: The contribution of Forensic science to crime analysis and investigation: Forensic intelligence. Forensic Science International 156, 171–181 (2006)

    Article  Google Scholar 

  18. Brewer, N., Liu, N., De Vel, O., Caelli, T.: Using Coupled Hidden Markov Models to Model Suspect Interactions in Digital Forensic Analysis. In: IEEE International Workshop on Integrating AI and Data Mining, AIDM 2006, pp. 58–64 (2006)

    Google Scholar 

  19. Ekpenyong, E., Urua, E.-A.: Agent-based Framework for Intelligent Natural Language Interface. Telecommunication Systems Journal (2011a) (First online, September, 2011)

    Google Scholar 

  20. Ekpenyong, M.: Optimizing Speech Naturalness in Voice User Interface Design: A Weakly-Supervised Approach. In: Proceedings of IEEE World Congress on Information and Communication Technologies, Mumbai, India, pp. 99–105 (2011b)

    Google Scholar 

  21. Toda, T., Kawai, H., Tsuzaki, M., Shikano, K.: An evaluation of cost functions sensi-tively capturing local degradation of naturalness for segment selection in concatenative speech synthesis. Speech Communication 48, 45–56 (2006)

    Article  Google Scholar 

  22. Nusbaum, H.C., Francis, A.L., Henly, A.S.: Measuring the naturalness of synthetic speech. International Journal of Speech Technology 2(1), 7–19 (1997)

    Article  Google Scholar 

  23. Ekpenyong, M., Urua, E.-A., Watts, O., King, S., Yamagishi, J.: Statistical Parametric Speech Synthesis for Ibibio. Speech Communication (2013), http://dx.doi.org/10.1016/j.specom.2013.02.003 (First online: February 2013)

  24. Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. In: IEEE Int. Conf. Acoustic., Speech, Signal Processing, ASS, vol. P-32(6), pp. 1109–1121 (1984)

    Google Scholar 

  25. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. McGraw Hill (2001)

    Google Scholar 

  26. Chen, B., Loizou, P.C.: A Laplacian-based MMSE estimator for speech enhancement. Speech Communication 49, 134–143 (2007)

    Article  Google Scholar 

  27. Rashidi-nejad, M., Abutalebi, H.R., Tadaion, A.A.: Speech Enhancement using an Im-proved MMSE Estimator with Laplacian Prior. In: 5th International Symposium on Tele-Communications, pp. 889–894 (2010)

    Google Scholar 

  28. Titze, I.R.: Principles of Voice Production. Prentice Hall (1994)

    Google Scholar 

  29. Baken, R.J.: Clinical Measurement of Speech and Voice. Taylor and Francis Ltd, London (1987)

    Google Scholar 

  30. Yamagishi, J., Veaux, C., King, S., Renals, S.: Speech synthesis technologies for indi-viduals with vocal disabilities: Voice banking and reconstruction. Acoustical Science and Technology 33(1), 1–5 (2012)

    Article  Google Scholar 

  31. Peisert, S., Bishop, M., Karin, S., Marzullo, K.: Toward Models for Forensic Analysis. In: 2nd International Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE), Seattle, WA, pp. 3–15 (2007)

    Google Scholar 

  32. Shapiro, H.T.: ’The willingness to risk failure. Science, Editorial 250(4981), 609 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses Ekpenyong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ekpenyong, M., Obot, O. (2014). Speech Quality Enhancement in Digital Forensic Voice Analysis. In: Muda, A., Choo, YH., Abraham, A., N. Srihari, S. (eds) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol 555. Springer, Cham. https://doi.org/10.1007/978-3-319-05885-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05885-6_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05884-9

  • Online ISBN: 978-3-319-05885-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics