Skip to main content

Ultrasound Images Denoising Based Context Awareness in Bandelet Domain

  • Conference paper
  • First Online:
Context-Aware Systems and Applications (ICCASA 2013)

Abstract

Ultrasound is widely used modalities in medical imaging. Ultrasound imaging is used in cardiology, obstetrics, gynecology, abdominal imaging, etc. Almost ultrasound image contains some noise, poor contrast. This paper describes a method to denoise ultrasound image based context awareness in bandelet domain. Our proposed method uses bandelet filters to remove noise in ultrasound images. For demonstrating the superiority of the proposed method, we have compared the results with the other recent methods available in literature.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-05939-6_37

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  2. Mallat, S., CMAP, Peyré, G., CEREMADE: Orthogonal bandelet bases for geometric images approximation. Commun. Pure Appl. Math. LXI, 1173–1212 (2008)

    Google Scholar 

  3. Le Pennec, E., Mallat, S.: Bandelet image approximation and compression. SIAM J. Multiscale Simul. 4(3), 992–1039 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Khare, A., Tiwary, U.S.: Soft-thresholding for denoising of medical images – a multiresolution approach. Int. J. Wavelet Multiresolut. Inf. Process. 3(4), 477–496 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Khare, A., Tiwary, U.S.: Symmetric Daubechies complex wavelet transform and its application to denoising and deblurring. WSEAS Trans. Signal Process. 2(5), 738–745 (2006)

    Google Scholar 

  6. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 8, 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hilton, M.L., Ogden, R.T.: Data analytic wavelet threshold selection in 2-d denoising. IEEE Trans. Signal Process. 45, 496–500 (1997)

    Article  Google Scholar 

  8. Jansen, M., Malfait, M., Bultheel, A.: Generalized cross validation for wavelet thresholding. Signal Process. 56, 33–44 (1997)

    Article  MATH  Google Scholar 

  9. Weyrich, N., Warhola, G.T.: Wavelet shrinkage and generalized cross validation for image denoising. IEEE Trans. Image Process. 7, 82–90 (1998)

    Article  Google Scholar 

  10. Donoho, D.L.: Denoising by soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  Google Scholar 

  11. Chang, S.G., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Starck, J.-L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coifman, R.R., Donoho, D.L.: Translation invariant denoising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Springer Lecture Notes in Statistics, vol. 103, pp. 125–150. Springer, New York (1995)

    Chapter  Google Scholar 

  14. Strang, G.: Wavelets and dilation equations: a brief introduction. MIT numerical analysis report no. 89 (1989)

    Google Scholar 

  15. Gopinath, R.A.: The phaselet transform – an integral redundancy nearly shift-invariant wavelet transform. IEEE Trans. Signal Process. 51, 1792–1805 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nason, G.P., Silverman, B.W.: The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp. 281–299. Springer, Berlin (1995)

    Chapter  MATH  Google Scholar 

  17. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms. IEEE Trans. Inf. Theory 38, 5587–5607 (1992)

    Article  MathSciNet  Google Scholar 

  18. Laine, A., Chang, C.-M.: Denoising via wavelet transforms using steerable filters. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1956–1959 (1995)

    Google Scholar 

  19. Candès, E., Donoho, D.: Curvelets: a surprisingly effective nonadaptive representation of objects with edges. In: Cohen, A., Rabut, C., Schumaker, L. (eds.) Curves and Surfaces Fitting, pp. 123–143. Vanderbilt University Press, Nashville (1999)

    Google Scholar 

  20. Do, M.N.: Directional multiresolution image representations. Ph.D. thesis, EPFL, Lausanne, Switzerland (2001)

    Google Scholar 

  21. Candes, E.J.: Ridgelets: theory and applications. Ph.D. thesis, Stanford University (1998)

    Google Scholar 

  22. Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets and curvelets for poisson noise removal. IEEE Trans. Image Process. 17(7), 1093–1108 (2008)

    Article  MathSciNet  Google Scholar 

  23. Schilit, B., Theimer, M.: Disseminating active map information to mobile hosts. IEEE Network 8, 22–32 (1994)

    Article  Google Scholar 

  24. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. British Machine Vision Conference, pp. 1–12 (2011)

    Google Scholar 

  25. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Technical report no. 400, Department of Statistics, Stanford University, Stanford, CA, November 1992

    Google Scholar 

  26. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptopia? J. R. Stat. Soc. Ser. B 57, 301–370 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC’99. LNCS, vol. 1707, pp. 304–307. Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Binh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Binh, N.T., Tuyet, V.T.H., Vinh, P.C. (2014). Ultrasound Images Denoising Based Context Awareness in Bandelet Domain. In: Vinh, P., Alagar, V., Vassev, E., Khare, A. (eds) Context-Aware Systems and Applications. ICCASA 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-05939-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05939-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05938-9

  • Online ISBN: 978-3-319-05939-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics