Abstract
Dependence logic extends the language of first order logic by means of dependence atoms and aims to establish a basic theory of dependence and independence underlying such seemingly unrelated subjects as causality, random variables, bound variables in logic, database theory, the theory of social choice, and even quantum physics. In this work we summarize the setting of dependence logic and recall the main results of this rapidly developing area of research.
J. Väänänen’s research partially supported by grant 40734 of the Academy of Finland and the EUROCORES LogICCC LINT programme.
P. Galliani’s research partially supported by the EUROCORES LogICCC LINT programme, by the Väisälä Foundation and by by Grant 264917 of the Academy of Finland.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Before [19] it was an open question whether a compositional semantics can be given to independence friendly logic.
- 2.
Or attributes, something that has a value.
- 3.
The basic ideas can be applied to almost any logic, especially to modal logic.
- 4.
See e.g. [26].
- 5.
- 6.
In that paper, conditional independence logic is simply called “independence logic”. After all, the two logics are equivalent.
- 7.
In order to guarantee that such a fixed point exist, \(R\) is required to appear only positively in \(\psi \).
- 8.
That is, over finite structures with a built-in successor operator and two constants for the least and greatest elements.
- 9.
The name “linear implication” is due to the similarity between the satisfaction conditions of this connective and the ones of the implication of linear logic. Another similarity is the following Galois connection: \(\theta \models \phi \multimap \psi \iff \theta \vee \phi \models \psi \) [1].
References
Abramsky S, Väänänen J (2009) From IF to BI. Synthese 167(2):207–230. doi:10.1007/s11229-008-9415-6
Armstrong WW (1974) Dependency structures of data base relationships. Inf Process 74
van Benthem J (1997) Modal foundations for predicate logic. Log J IGPL 5(2):259–286 (electronic). doi:10.1093/jigpal/5.2.259
Casanova MA, Fagin R, Papadimitriou CH (1982) Inclusion dependencies and their interaction with functional dependencies. In: Proceedings of the 1st ACM SIGACT-SIGMOD symposium on principles of database systems, PODS’82. ACM, New York, NY, USA, pp 171–176. doi:10.1145/588111.588141
Casanova MA, Vidal VMP (1983) Towards a sound view integration methodology. In: Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on principles of database systems, PODS’83. ACM, New York, NY, USA, pp 36–47. doi:10.1145/588058.588065
Durand A, Kontinen J (2012) Hierarchies in dependence logic. ACM Trans Comput Log (TOCL) 13(4):31. doi:http://dx.doi.org/10.1145/2362355.2362359
Ebbing J, Kontinen J, Müller J-S, Vollmer H (2012) A fragment of dependence logic capturing polynomial time. arXiv:1210.3321. URL: http://arxiv.org/abs/1210.3321
Enderton HB (1970) Finite partially-ordered quantifiers. Math Log Q 16(8):393–397. doi:10.1002/malq.19700160802
Fagin R (1981) A normal form for relational databases that is based on domains and keys. ACM Trans Database Syst 6:387–415. doi:10.1145/319587.319592
Galliani P (2012) Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann Pure Appl Log 163(1):68–84. doi:10.1016/j.apal.2011.08.005
Galliani P (2012) The dynamics of imperfect information. PhD thesis, University of Amsterdam, September 2012. URL: http://dare.uva.nl/record/425951
Galliani P (2013) Upwards closed dependencies in team semantics. In: Puppis G, Villa T (eds) Proceedings fourth international symposium on games, automata, logics and formal verification, vol 119 of EPTCS, pp 93–106. doi:http://dx.doi.org/10.4204/EPTCS.119
Galliani P, Hannula M, Kontinen J (2012) Hierarchies in independence logic. In: Rocca SRD (ed) Computer science logic 2013 (CSL 2013), Leibniz international proceedings in informatics (LIPIcs), vol 23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 263–280. doi:http://dx.doi.org/10.4230/LIPIcs.CSL.2013.263
Galliani P, Hella L (2013) Inclusion logic and fixed point logic. In: Rocca SRD (ed) Computer science logic 2013 (CSL 2013), Leibniz international proceedings in informatics (LIPIcs), vol 23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 281–295. doi:http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
Grädel E, Väänänen J (2013) Dependence and independence. Studia Logica 101(2):399–410. doi:10.1007/s11225-013-9479-2
Herrmann C (1995) Corrigendum: corrigendum to “on the undecidability of implications between embedded multivalued database dependencies” [Inf Comput 122:221–235 (1995)]. Inf Comput 204(12):1847–1851. doi:10.1016/j.ic.2006.09.002
Herrmann C (1995) On the undecidability of implications between embedded multivalued database dependencies. Inf Comput 122(2):221–235. doi:10.1006/inco.1995.1148
Hintikka J, Sandu G (1989) Informational independence as a semantic phenomenon. In: Fenstad JE, Frolov IT, Hilpinen R (eds) Logic, methodology and philosophy of science, pp. 571–589. Elsevier, Amsterdam. doi:10.1016/S0049-237X(08)70066-1
Hodges W (1997) Compositional semantics for a language of imperfect information. Log J IGPL 5(4):539–563 (electronic). doi:10.1093/jigpal/5.4.539
Hodges W (1997) Some strange quantifiers. In: Structures in logic and computer science, Lecture Notes in Computer Science, vol 1261. Springer, Berlin, pp 51–65. doi:10.1007/3-540-63246-8_4
Immerman N (1986) Relational queries computable in polynomial time. Inf Control 68(1):86–104
Kontinen J, Link S, Väänänen J (2013) Independence in database relations. In: Proceedings of the 20th International workshop (WOLLIC) on logic, language, information, and computation. Lecture notes in computer science, vol 8071. Springer, pp 152–156
Kontinen J, Väänänen J (2009) On definability in dependence logic. J Log Lang Inf 18(3):317–332. doi:10.1007/s10849-009-9082-0
Kontinen J, Väänänen J (2013) Axiomatizing first order consequences in dependence logic. Ann Pure Appl Log 164:1101–1117. URL: http://arxiv.org/abs/1208.0176
Mann AL, Sandu G, Sevenster M (2011) Independence-friendly logic: A game-theoretic approach. In: London Mathematical Society lecture note series, vol 386. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511981418
Mannila H, Räihä KJ (1992) The design of relational databases. Addison-Wesley, Cambridge
Naumov P, Nicholls B (2013) Re axiomatization of conditional independence. In: TARK, 2013. http://www2.mcdaniel.edu/pnaumov/papers/2013.tark.nn.pdf
Parker D Jr, Parsaye-Ghomi K (1980) Inferences involving embedded multivalued dependencies and transitive dependencies. In: Proceedings of the 1980 ACM SIGMOD international conference on management of data, ACM, pp 52–57. doi:10.1145/582250.582259
Väänänen J (2007) Dependence logic. In: London Mathematical Society student texts, vol 70. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511611193
Vardi MY (1982) The complexity of relational query languages. In: Proceedings of the fourteenth annual ACM symposium on theory of computing. ACM, pp 137–146
Walkoe WJ Jr (1970) Finite partially-ordered quantification. J Symbolic Log 35:535–555. doi:10.2307/2271440
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Galliani, P., Väänänen, J. (2014). On Dependence Logic. In: Baltag, A., Smets, S. (eds) Johan van Benthem on Logic and Information Dynamics. Outstanding Contributions to Logic, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06025-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-06025-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06024-8
Online ISBN: 978-3-319-06025-5
eBook Packages: Humanities, Social Sciences and LawPhilosophy and Religion (R0)