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1 Introduction

The goal of dependence logic is to establish a basic theodepéndence and
independence underlying such seemingly unrelated sstgsatausality, random
variables, bound variables in logic, database theory,tbery of social choice,
and even quantum physics. There is an avalanche of new gesuthis field
demonstrating remarkable convergence. The concepts Joflependence in the
different fields of humanities and sciences have surptiginguich in common
and a common logic is starting to emerge.

Dependence logid [23] arose from the compositional serosraf Wilfrid
Hodges[14] for the independence friendly lodic![L3] 19]. dependence logic
the basic semantic conceptstthat of an assignmentsatisfying a formula in
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a modebn,

M= ¢,

as in first order logic, but rather the concept @iedS of assignments satisfying
in 91,
M s ¢.

Defining satisfaction relative to setof assignments opens up the possibility to

express dependence phenomena, roughly as passing in picpddogic from

one valuation to a Kripke model leads to the possibility tpress modality. The

focus in dependence logic is not on truth values but on verigdlues. We are

interested in dependencies between individuals ratherlibawveen propositions.
In [24] Johan van Benthem writes:

“Sets of assignmentS encode several kinds of ‘dependence’
between variables. There may not be one single intuition.
‘Dependence’ may mean functional dependence

(if two assignments agree i on x, they also agree op), (1)
but also other kinds of ‘correlation’ among value ranges.

Different dependence relations may have different mattieata
properties and suggest different logical formalisms.”

This is actually how things have turned out. For a start,gittie concept of func-
tional dependence it is possible, as Wilfrid Hodges [14] destrated, to define
compositionall@ the semantics of independence friendly logic, the extenefo
first order logic by the quantifier

dx/y¢  i.e. “thereis anc, independently of;, such that”,

as follows: Suppos# is a team of assignments, a “plural state”, in a madel
Then

M =5 v /yd
if and only if there is another sét such that

M =g ¢

and the following “transition”-conditions hold:

1Before [14] it was an open question whether a compositiogralstics can be given to inde-
pendence friendly logic.



e If s € S, then there ig’ € S’ such that ifz is a variable other than, then
s(z) = §(2).
e If & € 5, then there is € S such that ifz is a variable other than, then
s(z) = §(2).
o If 5,8 € S"ands(z) = s'(z) for all variables other thap or x, then
s(x) = §'(z).
In a sense, independence friendly logic is a logical forsmalsuggested by the
functional dependence relation, but its origin is in gameotietical semantics,
not in dependence relations. With dependence logic thattuis different. It
was directly inspired by the functional dependence ratatitroduced by Wilfrid
Hodges.

Peter van Emde Boas pointed out to the second author in thaf 2005 that
the functional dependence behind dependence logic is kimowatabase theory
[2]. This led the second author to realize—eventually—thatdependence we
are talking about here is not just about variables in logtcamuch more general
phenomenon, covering such diverse areas as algebratissattemputer science,
medicine, biology, social science, etc.

As Johan van Benthem points out [ (1), there are differepedéence intu-
itions. Of course the same is true of intuitions about indeleace. For some time
it was not clear what would be the most natural conceph@épendenceThere
was the obvious but rather weak form of independencefadm y as dependence
of z on some variable other thany. Eventually a strong form of independence
was introduced in_[10], which has led to a breakthrough inumderstanding of
dependence relations and their role.

We give an overview of some developments in dependence (8gictior 2)
and independence logic (Sectidn 3). This is a tiny selectitended for a new-
comer, from a rapidly growing literature on the topic. Fertinore, in Sectiohl4
we discuss conditional independence atoms and we provea result — that is,
that conditional and non-conditional independence logéceajuivalent. Finally,
in Sectior b we briefly discuss an application of our logidsebef representation.

2 Functional dependence

The approach of [23] is that one should look for the strongestept of depen-
dence and use it to define weaker versions. Conceivably and do the oppo-
site, start from the weakest and use it to define strongertamalgsconcepts. The

3



weakest dependence concept—whatever it is—did not offelf immediately, so
the strongest was more natural to start with. The wisdom adigong in the ex-
tremes lies in the hope that the extremes are most likely tofest simplicity and
robustness, which would make them susceptible to a theafstudy.

Let us start with the strongest form of dependence, funatidependence. We
use the vector notatiafi for finite sequences, ..., z, of variableB. We add to
first order IogiE new atomic formulas

=(7, @), 2)
with the intuitive meaning
“the ¢/ totally determine the’.

In other words, the meaning &fl(2) is that the values of theabéesy functionally
determine the values of the variablésWe think of the atomic formulagi(2) on
a par with the atomic formula = y. In particular, the idea is that the formula
(@) is a purely logical expression, not involving any nogit@l symbols, in par-
ticular no function symbol for the purported function masifing the functional
dependence.

The best way to understand the concépt (2) is to give it exaoastics: To
this end, suppos®t is a model. Supposg is a set of assignments infd (or a
teamas such sets are called). We define:

Definition 1. The teamS satisfies=(y, ) in 21, in symbols

M s =y, 7)

Vs, s' € S(s(y) = §'(¢) — (&) = §'(2)). (3)

One may ask, why not define the meaning-df;, «) as “there is a function
which mapgy to 2”? The answer is that if we look at the meaning-df, =) under
oneassignment, then theralwaysis a functionf mappings(y) to s(z), namely
the function{(s(y), s(z))}, and if we look at the meaning ef(y, ) undermany
assignments, a team, thén (3) is indeed equivalent to ttenstat that there is a
function mapping(y) to s(z) for all s in the team.

20r attributes, something that has a value.
3The basic ideas can be applied to almost any logic, espgtiathodal logic.

4



A special case of(y, ¥) is =(¥), theconstancy atomThe intuitive meaning
of this atom is that the value af is constant in the team. It results froaiy, &)
wheny/ is the empty sequence.

Functional dependence has been studied in database thebigome basic
properties, calledArmstrong’s Axioms have been isolated|[2]. These axioms
state the following properties ef(y, 7):

(Al) =(Z,Z). Anything is functionally dependent of itself.

(A2) If =(y, %) andy C Z, then=(Z, ¥). Functional dependence is preserved by
increasing input data.

(A3) If is a permutation of, 4 is a permutation of, and=(2, Z), then=(y, «).
Functional dependence does not look at the order of thebtasa

(A4) If =(7, 2) and=(Z, ¥), then=(y, ¥). Functional dependences can be transi-
tively composed.

The following result is well-known in the database commyihd included
in textbooks of database thedﬂ'y:

Theorem 2([2]). The axioms (Al)-(A4) are complete in the sense that a relatio
=(#, y) follows by the rules (A1)-(A4) from a sEtof relations of the same form
if and only if every team which satisfigssatisfies=(y/, 7).

Proof. Suppose=(y, ¥) does not follow by the rules from a setof atoms. Let/
be the set of variablessuch that=(y, z) follows by the rules front. Let W be
the remaining variables iR U {=(7, #)}. ThusZ N W # (). Consider the model
{0, 1} of the empty vocabulary and the team

The variables i/ | The variables iV
0|0 ... 0 O|...]... 0
0|0]... 0 1|1 ... 1

The atom=(y, %) is not true in this team, becauge_ V andZNW =# (). Suppose
then=(v, &) is one of the assumptions. If eachis in V, then so is eaclv so
they all get valu#). On the other hand, if someis in IV, it gets in this team two
values, so it cannot violate dependence.

0]

4See e.g.[[20].



We now extend the truth definitiohl(1) to the full first ordegio augmented
by the dependence atomsz, i/). To this end, let(a/z) denote the assignment
which agrees withs except that it gives: the valuea. We define for formulas
which have negation in front of atomic formulas only:

Mgz =y = VseS(s(a) = s(y)).

M =g =y — VseS(s(z) # (y))

MEs R(xq,...,xp) — Vse S((s(x1),...,s(zn)) € RM).

Mg "R(z1,....00) == Vs € S((s(z1),...,s(xa)) ¢ B™).

m)zs(b/\lb <~ ml:5¢andm):5*1/1.

MpEs VY <= There are5; andS; such that 4)
S=51US;,M ):Sl b, andi )252 (0

M =g Jxo < M =g ¢ for someS’ such that
Vs e Sdae M(s(a/z) €S

M =g Voo < M =g ¢ for someS’ such that

Vs € SVa e M(s(a/z) € S") )
It is easy to see that for formulas not containing any depecelatoms, that
is, for pure first order formulas,

m):{s}(b <~ m’zs(b

and
MEs ¢ == Vs € S(ME 9),

wheredt =, ¢ has its usual meaning. This shows that the truth conditidihs (
agree with the usual Tarski truth conditions for first ordemfulas. Thus con-
sidering the “plural state$ rather than individual “states’ makes no difference
for first order logic, but it makes it possible to give the degence atoms-(Z, ¢/)
their intended meaning.

What about axioms for non-atomic formulas of dependencePoghould
we adopt new axioms, apart from the Armstrong Axioms [A1-A4There is a
problem! Consider the sentence

JaVy3z(=(z,y) A -z = x). (5)

It is easy to see that this sentence is satisfied by a team indelm if and
only M is infinite. As a result, by general considerations goingktacGodel’s
Incompleteness Theorem, the semantic consequence nelatio

¢ Y = VIVS(M =5 ¢ = M =5 ¢)
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is non-arithmetical. Thus there cannot be any completethesgsem in the usual
sense. However, this does not prevent us from trying to findnax and rules
which are as complete as possible. This is what is done_in [B¢re a com-
plete axiomatization is given fdirst order consequences of dependence logic
sentences. The axioms are a little weaker than standarafitst axioms when
applied to dependence formulas, but on the other hand thhersva special ax-
ioms for the purpose of dealing with dependence atoms as phfvtrmulas in a
deduction. Rather than giving all details (which can be tbum[18]) we give just
an example of the use of both new rules.

Suppose we are givenx,y and f, and we have already concluded, in the
middle of some argument, the following:

If ¢ > 0, then there i9 > 0 depending only ol such that
if |x —y| <9, then|f(z) — f(y)| <e.

By merely logical reasons we should be able to conclude

There isd > 0 depending only oa such that
if e >0and|x —y| <9, then|f(z) — f(y)| <e.

Note that ‘lepending only oa” has moved from inside the implication to outside
of it. The new rule of dependence logic, isolatedinl [18], ethpermits this, is
called Dependence Distribution RuleNeither first order rules nor Armstrong’s
Axioms give this because neither of them gives any clue of hmweal with
dependence atoms as parts of bigger formulas.

Here is another example of inference in dependence logipp&e we have
arrived at the following formula in the middle of some argunhe

For everyzr and every > 0 there isd > 0 depending only oa
such that for ally, if |z — y| < 6, then|f(z) — f(y)| < e.

On merely logical grounds we should be able to make the fatigwonclusion:

For everyz and every > 0 there is§ > 0

such that for ally, if |z — y| < 6, then|f(z) — f(y)| <,
and moreover, for any other ande’ > 0 there isy’ > 0
such that for ally’, if |2 — ¢/| < &', then|f(2") — f(v)]| <€
and ife = €, thend = ¢'.



The new rule, isolated in [18] which permits this step ise@dbependence Elim-
ination Rule because the dependence atm®epending only orr” has been en-
tirely eliminated. The conclusion is actually first ordéat is, without any occur-
rence of dependence atoms.

The first author([7] has given an alternative complete axitwaton, not for
first order consequences of dependence sentences, bupkmdince logic con-
sequences of first order sentences. Clearly, more resultg phrtial axiomatiza-
tions of the logical consequence relation in dependende tamn be expected in
the near future.

An important property of dependence logic is theevnward closurgl5]: If
M Es ¢ andsS’ C S, then =g ¢. Itis a trivial matter to prove this by in-
duction on the length of the formula. Once the downward clsiestablished it
is obvious that we are far from having a negation in the sehstassical logic.
Intuitively, dependence is a restriction of freedom (ofues of variables in as-
signments). When the team gets smaller there is even le$oime This intuition
about the nature of dependence prevails in all the logicatatpns of dependence
logic. Since dependence formulas are easily seen to beseggieble in existential
second order logic, the following result shows that dowrmd@osure is reallyhe
essential feature of dependence logic:

Theorem 3([17]). Let us fix a vocabulary. and ann-ary predicate symba$ ¢
L. Then:

e ForeveryL-formula¢(z, ..., x,) of dependence logic there is an existential
second ordel. U {S}-sentenceb(.S), closed downward with respect 9
such that for allL-structuresM and all teamsX:

M Ex G(a1, .., n) == M = B(X). (6)

e For every existential second ordérJ{S}-sentenc@(.5), closed downward
with respect toS, there exists an.-formula ¢(x4, ..., z,) of dependence
logic such that[(b) holds for alL-structures) and all teamsX # ().

This shows that dependence logic is maximal with respettagtoperties of
being expressible in existential second order logic anddodbwnward closed.
This theorem is also the source of the main model theorepicaderties of de-
pendence logic. The Downward Lowenheim-Skolem Theorbm(ompactness
Theorem and the Interpolation Theorem are immediate @ed. Also, when
the above theorem is combined with the Interpolation TheayEfirst order logic,
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we get the fact that dependence logic sentegdes which there exists a depen-
dence logic sentenag such that for alb)t

MEY = MEP

are first order definable. So not only does dependence logicave the classi-
cal negation, the only sentences that have a classicaliorgat the first order
sentences.

3 Independence logic

Independence logic was introduced|in|[10]. Before going ihie details, let us
look at the following precedent:

In [24] Johan van Benthem suggested, as an example of anr ‘it of
correlation” than functional dependence, the followingeledence relation for a
teamsS in a modeft:

Jae Mabe M({s(z):s€ S, s(y) =a} #{s(z):s€8S,s(y) =0b}). (7)
The opposite of this would be
Va € MVb e M({s(x):s € S,s(y) =a} ={s(x):s€ S, s(y)=0b}), (8)

which is a kind of independence offrom y, for if we takes € S and we are told
whats(y) is, we have learnt nothing abosl(tz), because for eache M the set

{s(z):s €S, s(y)=a}

is the same. This is the idea behind the independence atbdny: the values of
Z should not reveal anything about the valueg/@ind vice versa. More exactly,
supposélt is a model and is a team of assignments inid. We define:

Definition 4. A team§ satisfies the atomic formulé&_L ¢ in 91 if
Vs,s' € S3s" € S(s"(¢) = s(y) N §"(Z) = §'(X)). 9)

We can immediately observe that a constant variable is ewntgnt of every
variable, including itself. To see this, suppasé constant inS. Lety be any
variable, possibly = z. If s, s’ € S are given, we need’ € S such that”(z) =
s(z) ands”(y) = '(y). We can simply take” = s’. Now s”(z) = s(x), because
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x is constant inS. Of courses”(y) = s'(y). Conversely, ifz is independent of
every variable, it is clearly constant, for it would have ®ibdependent of itself,
too. So we have
=7) — ¥ L2z

We can also immediately observe the symmetry of indeperjéecause cri-
terion (9) is symmetrical in andy. More exactlys”(y) = s(y) A §"(z) = §'(x)
ands”(z) = §'(x) A s"(y) = s(y) are trivially equivalent.

Dependence atoms were governed by Armstrong’s Axioms. plergence
atoms have their own axioms introduced in the context ofsamdariables in[9]:

Definition 5. The following rules are thindependence Axioms
1. 7 L 0 (Empty Set Rule)
2. If7 L ¢, theny L # (Symmetry Rule).
3. If# L ¢z, thenz L i (Weakening Rule).
4. If 7 L 7, thenz L i (Constancy Rule).
5. If# L yandZy L Z, then? L ¢z (Exchange Rule).
Note thatry L zy is derivable fromz L x andy L y, by means of the Empty

Set Rule, the Constancy Rule and the Exchange Rule.

It may seem that independence must have much more contenwtiat these
four axioms express, but they are actually complete in thevitng sensé:

Theorem 6 (Completeness of the Independence Axioms,.[g])" is a finite set
of independence atoms of the fotim_ ¢ for variousu andv, theny | & follows
from T according to the above rules if and only if every team thasfiasT" also
satisfieg | 7.

Proof. We adapt the proof of [9] into our framework. Suppose. i follows
semantically from> but does not follow by the above rules. W.l.oXjis closed
under the rules. We may assume tliandy are minimal, that is, ift’ C ¥ and
y' C y and at least one containment is proper, thed'ifL ¢’ follows from X
semantically, it also follows by the rules. It is easy to de tf X = u L u, then
Yu Ll u.

SThis was originally proved for random variables[in [9] andrtradapted for databases[in|[16].
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Supposer = (xy,...,z;) andy = (y1,...,Ym). LetzZ = (z,...,2;) be
the remaining variables. Wlod, > 1 andm > 1, z; L z; ¢ %, andz; ¢

{y17 SRR ym}
We construct a tearfi in a 2-element model/ = {0, 1} of the empty vocab-

— ——

ulary as follows: We take t§ everys : yz — M, which satisfies(u) = 0 for u
such that: L » € X and in addition

s(x1) = the number of onesig[{zs, ..., z;, 1, .., Ym}] mod 2

Claim 1: ¥ L ¢ is not true inS. Suppose otherwise. Consider the following two
assignments iy

x; otherx; y; othery; other
s |1 0 1 0 0
s 0 0 0 0 0

If s” is such that” (%) = s(Z) ands”(y) = s'(¥), thens” ¢ S. Claim 1 is proved.

Claim 2: S satisfies all the independence atomsiin Suppose; | W € S. If
eitherv or « contains only variables i@, then the claim is trivial, as then either
v orw has inS all possible binary sequences. So let us assume thatsbetiol
w meetzy. If v/ does not cover all ofy, then S satisfiesy’ | «j, because we
can fix parity on the variable i@y which does not occur inw. So let us assume
vw covers all ofry. Thusv = 7'’z andw = z"y"Z”, wherexr’z?” = ¥ and
y'y" = y. W.lo.g.,, 7" # () andZ'y’ # Zy. By minimality 7/ L ¢/ € ¥ and
" 1Ly e X, Sincev L w € ¥, a couple of applications of the Exchange and
= =/

Weakening Rules giveg'y’ | 7"y” € ¥. Butthenz’z” L y'y"” € 3, contrary to
assumption.

O

We can use the conditioris (4) to extend the truth definitichécentireinde-
pendence logid.e. the extension of first order logic by the independeroma.
Can we axiomatize logical consequence in independence?oghe answer is
again no, and for the same reason as for dependence logiell Rext the sen-
tence[(b) characterizes infinity and ruins any hope to hawergpteteness theorem
for dependence logic. We can do the same using independtms:a

Lemma 7. The sentence
VrIyVuv(zy Luv A (z=u <+ y=v) A—wv = 2) (20)

is true exactly in infinite models.
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The conclusion is that the kind of dependence relation reeéateexpressing
infinity can be realized either by the functional dependemtation or by the
independence relation. Another such example is parity itefimodels. The
following two sentences, the first one with a dependence ataiihe second with
an independence atom, both express the evenness of the aifiaite model:

VeIyVudv(=(u, ) A (z =v >y =u) Az =1y)

VedyVuv(zy Luv A (z =v < y=u) Az =1y)

The fact that we could express, at will, both infinity and evess by means of
either dependence atoms or independence atoms, is notidersc®ependence
logic and independence logic have overall the same expeegsiver:

Theorem 8. The following are equivalent:

(1) K is definable by a sentence of the extension of first order lngtbe depen-
dence atoms.

(2) K is definable by a sentence of the extension of first order logithe inde-
pendence atoms.

(3) K is definable in existential second order logic.

Proof. The equivalence of (1) and (3), a consequence of results] iané [25],
as observed in [15], is proved in [23]. So it suffices to shoat (1) implies (2).
We give only the main idea. Sentences referred to in (1) haaraal form [23].
Here is an example of a sentence in such a normal form

VaVyFvIw(=(z,v) A =(y,w) A é(x,y, v, w)),

whereo(z, y, v, w) is a quantifier free first order formula. This sentence can be
expressed in terms of independence atoms as follows:

VaVyJvIw(zv Ly A ywlzo A ¢(z,y, v, w)).
0]

Note that independence, as we have defined it, is not theioegstdepen-
dence. Itis rather a very strong denial of dependence. Hexvthere are uses of
the concepts of dependence and independence where thenegatependence
isthe same as independence. An example is vector spaces.
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There is an earlier common use of the concept of independentmic,
namely the independence of a 3&bf axioms from each other. This is usually
taken to mean that no axiom is provable from the remaining.omy Godel's
Completeness Theorem this means the same as having forxdaoh@ e ¥ a
model of the remaining oneés \ {¢} in which ¢ is false. This is not so far from
the independence concaptl Z. Again, the idea is that from the truth &f\ {¢}
we can say nothing about the truth-valuesofThis is the sense in which Contin-
uum Hypothesis (CH) is independent of ZFC. Knowing the ZF s gives as
no clue as to the truth or falsity of CH. In a sense, our inddpane atony |
is the familiar concept of independence transferred froenvtbrld of formulas to
the world of elements of models, from truth values to vaealdlues.

4 Conditional Independence

The independence atognl Z turns out to be a special case of the more general
atomy 1z 2, the intuitive meaning of which is that the variablgsre totally
independent of the variableSwhen the variablesg’ are kept fixed (see [10]).
Formally,

Definition 9. A teamS$ satisfies the atomic formula Lz z'in 0t if
Vs, s € S(s(Z) = §'(Z) — 3s" € S(s"(TY) = s(zy) A s"(2) = §'(2))).
Some of the rules that this “conditional” independencearotibeys are
Reflexivity: & 1Lz v,
Symmetry: If y 1Lz Z, thenz Lz v,
Weakening: If 4y’ 1z Z%/, theny 1z 2,
First Transitivity: If 7 1> v andu 1 zz v, thenu 1> v;
Second Transitivity: If ¥ Lz yandZz L; 4, then¥ Lz .
Exchange: If ¥ 1>y andzy Lz u, thent L: .

Are these axioms complete? More in general, is it possiblntba finite, de-
cidable axiomatization for the consequence relation betveenditional indepen-
dence atoms?
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The answer is negative. Indeed, in[[11] 12] Hermann provatttie conse-
guence relation between conditional independence atomnsdiscidable; and as
proved by Parker and Parsaye-Ghomilinl[22], it is not possiblfind a finite
and complete axiomatization for these atoms. However,dhseqguence relation
is recursively enumerable, and in [21] Naumov and Nichoégedoped a proof
system for it.

The logic obtained by adding conditional independence attifirst order
logic will be called in this papeconditional independence logidt is clear that
it contains (nonconditional) independence logic; andhfeimtnore, as discussed in
[10], it also contains dependence logic, since a dependsioce—(Z, i/) can be
seen to be equivalent t L > 7. It is also easy to see that every conditional in-
dependence logic sentence is equivalent to sBnsentence, and therefore that
conditional independence logic is equivalent to indepanddogic and depen-
dence logic with respect to sentences.

But this leaves open the question of whether every conditimmlependence
logic formula is equivalent to some independence logic olmewhat follows,
building on the analysis of the expressive power of condélandependence logic
of [8],|§ we prove that independence logic and conditional indepacelgic are
indeed equivalent.

In order to give our equivalence proof we first need to mentiwo other
atoms, the inclusion atom C i and the exclusion atom | . These atoms cor-
respond to the database-theoretic inclusion|[6, 3] andisianh [4] dependencies,
and hold in a team if and only if no possible value fbis also a possible value
for ¢y and if every possible value fafis a possible value fay respectively. More
formally,

Definition 10. A teamS satisfies the atomic formulaC ¢ in 9t if
Vs € S3s’ € S(s'(y) = s(7))
and it satisfies the atomic formut&| ¢ in Ot if
Vs,s' € S(s(Z) # s'(¥)).
As proved in[[8],

1. Exclusion logic (that is, first order logic plus exclusatoms) is equivalent
to dependence logic;

8In that paper, conditional independence logic is simplyecatindependence logic”. After
all, the two logics are equivalent.
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2. Inclusion logic (that is, first order logic plus inclusiatboms) is not compa-
rable with dependence logic, but is contained in (noncaoomtd) indepen-
dence logic;

3. Inclusion/exclusion logic (that is, first-order logiaplinclusion and exclu-
sion atoms) is equivalent toonditionalindependence logic (that is, first-
order logic plus conditional independence atamsis; 2).

Thus, if we can show that exclusion atoms can be defined instefninoncon-
ditional) independence atoms and of inclusion atoms, weobtésin at once that
independence logic contains conditional independencie l@nd, therefore, is
equivalent to it). But this is not difficult: indeed, the ewsion atom | 7 is
equivalent to the expression

VT CIANGLEANGE 2.

This can be verified by checking the satisfaction conditioinhis formula. But
more informally speaking, the reason why this expressi@ugjigvalent tar | i/ is
that it states that that every possible value'tg also a possible value fat thaty
andz are independent (and therefore, any possible valgenofist occur together
with any possible value of), and thaty is always different front. Such az'may
exist if and only if no possible value af is also a possible value @f that is, if
and only ifZ | ¢ holds.
Hence we may conclude at once that

Theorem 11.Every conditional independence logic formula is equivalersome
independence logic formula.

In [8] it was also shown the following analogue of Theoigm 3:

Theorem 12. Let us fix a vocabulary. and ann-ary predicate symbab ¢ L.
Then:

e For everyL-formula¢(zy, ..., z,,) of conditional independence logic there
is an existential second orddr U {S}-sentenceb(.S) such that for allL-
structuresM and all teamsX:

M Ex @21, ) = M= O(X). (11)
e For every existential second ordéru {S'}-sentencebd(S) there exists an
L-formula ¢(z4, ..., z,,) of conditional independence logic such thiat](11)
holds for all L-structures)M and all teamsX # ().
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Due to the equivalence between independence logic andteomaiindepen-
dence logic, the same result holds if we only allow noncoodél independence
atoms. In particular, this implies that over finite modelddpendence logic cap-
tures precisely the NP properties of teams.

5 Belief Representation and Belief Dynamics

Given a modebt, a variable assignmentadmits a natural interpretation as the
representation of a possibdéate of thingswhere, for every variable, the value
s(v) corresponds to a speciffact concerning the world. To use the example
discussed in Chapter 7 of [7], let the element®dtorrespond to the participants
to a competition: then the values of the variablesz,; andx; in an assignment
may correspond respectively to the first-, second- and ihd:fitaced players.

With respect to the usual semantics for first order logic,st Grder formula
represents aonditionover assignments. For example, the formula

O(21, 9, 3) = (mx1 = T2) A (m22 = x3) A (—1 = 23)

represents the (very reasonable) assertion according ichwhe winner, the
second-placed player and the third-placed player arestihdi.

Now, a teamS, being a set of assignments, represents a set of statesgé$thi
Hence, a team may be interpreted as lik&ef setof an agentv: s € S if and
only if the agentx believess to be possible. Moving from assignments to teams,
it is possible to associate to each formgland modeft the family of teams
{S : M =5 ¢}, and this allows us to interpret formulas@mditions over belief
sets in our example (=g ¢(x1, z2, x3) ifand only if M = ¢(xy, o, z3) for all
s € S, thatis, if and only if our agent believes that the winner, the second-placed
player and the third-placed player will all be distinct.

However, there is much that first order logic cannot expreganding the be-
liefs of our agent. For example, there is no way to represenassertion that the
agenta knowswho the winner of the competition will be: indeed, supposa th
a first order formul& represents such a property, anddetand s, be any two
assignments with; (1) # s»2(x1), corresponding to two possible states of things
which disagree with respect to the identity of the winnereihforS; = {s;}
andS; = {s2}, we should have thait =g, 6 and thatht =g, 0: indeed, both
S; and S, correspond to belief sets in which the winner is knowrnt¢and is
respectivelys; (z1) or sy(x1)). But since a teany satisfies a first order formula if
and only if all of its assignments satisfy it, this implieathi/ |=g, s, 6; and this
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is unacceptable, because if our agetelieves botls, ands, to be possible then
she does not know whether the winner will a¢x;) or so(z1).

How to represent this notion of knowledge? The solutions ieasy to see,
consists in addingonstancy atom® our language: indeedt =g= dep(x;)
if and only if for any two assignments s’ € S we have that(z,) = (1),
that is, if and only if all states of things the agentonsider possible agree with
respect to the identity of the winner of the competition. Wifiainstead, our
agent could infer the identity of the winner from the identf the second- and
third-placed participants? Then we would have tat=g =(zqz3, 21), Since
any two states of things which the agent considered posaitdewhich agreed
with respect to the identity of the second- and third-plgaadicipants would also
agree with respect to the identity of the winner. More in gahea dependence
atom=(y, ) describes a form ofonditional knowledged =s =(v, ) if and
only if S corresponds to the belief state of an agent who would be allleduce
the value ofr from the value ofy.

On the other hand, independence atoms represent situafiam®rmational
independencefor example, ift =g x; L x5 then, by learning the identity of
the third-placed player, our agent could infer nothing aabbut the identity of
the winner. Indeed, suppose that, according to our agaatpdssible thatl will
win (that is, there is @ € S with s(z;) = A) and it is possible thaB will place
third (that is, there is @’ € S such thats’(x3) = B). Then, by the satisfaction
conditions of the independence atom, there is algb@ S such that”(z;) = A
ands”(z3) = B: in other words, it is possible that will be the winnerand B
will place third, and telling our agent that will indeed place third will not allow
her to removed from her list of possible winners.

Thus, it seems that dependence and independence logideaisafragments
thereof, may be interpreted aslief description languagesThis line of investi-
gation is pursued further in|[7]: here it will suffice to diss.the interpretation of
thelinear implicatior{ﬂ ¢ —o 1), a connective introduced in/[1] whose semantics is
given by

M s ¢ — v & forall S’ such thatht =g ¢ it holds that =susr .

How to understand this connective? Suppose that our agenhose belief
state is represented by the teaminteracts with another agept whose belief

’The name “linear implication” is due to the similarity be®vethe satisfaction conditions of
this connective and the ones of the implication of lineaidognother similarity is the following
Galois connectiond = ¢ — ¢y <= 0V ¢ = ¢ [1].
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state is represented by the tedfmone natural outcome of this interaction may be
represented by the teafiu S’, corresponding to the set of all states of things that
a or 5 consider possible. Then stating that a te@isatisfiesp —o ) corresponds

to asserting that whenever our agenhteracts with another agefitwhose belief
state satisfie®, the result of the interaction will be a belief state saiisfyy:

in other words, using the linear implication connectiveoat us to formulate
predictions concerning the futuexolutionof the belief state of our agent.

One can, of course, consider other forms of interactionsdse agents and
further connectives; and quantifiers can also be given abinterpretations in
terms of belief updates (the universal quantifier, for example, can be un-
derstood in terms of the agent doubtingher beliefs about). But what we
want to emphasize here, beyond the interpretations of tbeifgpconnectives,
is that team-based semantics offers a very general and fudviramework for
the representation of beliefs and belief updates, and thtams of dependence
and independence arise naturally under such an intenomtaf his opens up
some fascinating — and, so far, relatively unexplored — agsrof research, such
as for example a more in-depth investigation of the relathim between depen-
dence/independence logic and dynamic epistemic logic (2BH other logics of
knowledge and belief; and, furthermore, it suggests thetemic and doxastic
ideas may offer some useful inspiration for the formulaaod analysis of further
notions of dependence and independence.

6 Concluding remarks

We hope to have demonstrated that both dependence and mtewe can be
given a logical analysis by moving in semantics from singbess to plural
statesS. Future work will perhaps show that allowing limited traimns from
one plural state to another may lead to decidability reswlteerning dependence
and independence logic, a suggestion of Johan van Benthem.

Furthermore, we proved the equivalence between conditiodapendence
logic and independence logic, thus giving a novel contidsuto the problem of
characterizing the relations between extensions of degreralogic.

Finally, we discussed how team-based semantics may besiaddras a very
general framework for the representation of beliefs antebeapdates and how
notions of dependence and independence may be understdedttis interpre-
tation. This suggests the existence of intriguing conoestbetween dependence
and independence logic and other formalisms for belief kadge representation,
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as well as a possible application for this fascinating fgrafllogics.
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