Skip to main content

Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8402))

  • 902 Accesses

Abstract

The optimal value computation for turned-based stochastic games with reachability objectives, also known as simple stochastic games, is one of the few problems in NP ∩ coNP which are not known to be in P. However, there are some cases where these games can be easily solved, as for instance when the underlying graph is acyclic. In this work, we try to extend this tractability to several classes of games that can be thought as ”almost” acyclic. We give some fixed-parameter tractable or polynomial algorithms in terms of different parameters such as the number of cycles or the size of the minimal feedback vertex set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, D., Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: Deterministic graphical games revisited. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 1–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Andersson, D., Miltersen, P.B.: The complexity of solving stochastic games on graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 112–121. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdržálek, J.: The dag-width of directed graphs. Journal of Combinatorial Theory, Series B 102(4), 900–923 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple stochastic games. In: GandALF, pp. 74–86 (2011)

    Google Scholar 

  5. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM) 55(5), 21 (2008)

    Article  MathSciNet  Google Scholar 

  6. Condon, A.: The complexity of stochastic games. Information and Computation 96(2), 203–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Condon, A.: On algorithms for simple stochastic games. Advances in Computational Complexity Theory 13, 51–73 (1993)

    MathSciNet  Google Scholar 

  8. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Friedmann, O.: An exponential lower bound for the parity game strategy improvement algorithm as we know it. In: 24th Annual IEEE Symposium on Logic In Computer Science, LICS 2009, pp. 145–156. IEEE (2009)

    Google Scholar 

  10. Gary, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness (1979)

    Google Scholar 

  11. Gimbert, H., Horn, F.: Simple stochastic games with few random vertices are easy to solve. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 5–19. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Graham, K., Knuth, D.E.: Patashnik, concrete mathematics. In: A Foundation for Computer Science (1989)

    Google Scholar 

  13. Hoffman, A.J., Karp, R.M.: On nonterminating stochastic games. Management Science 12(5), 359–370 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  14. Juglaret, Y.: Étude des simple stochastic games

    Google Scholar 

  15. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic game problem. Information and Computation 117(1), 151–155 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences of the United States of America 39(10), 1095 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal of IGPL 7(1), 103–124 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tripathi, R., Valkanova, E., Anil Kumar, V.S.: On strategy improvement algorithms for simple stochastic games. Journal of Discrete Algorithms 9(3), 263–278 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Auger, D., Coucheney, P., Strozecki, Y. (2014). Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2014. Lecture Notes in Computer Science, vol 8402. Springer, Cham. https://doi.org/10.1007/978-3-319-06089-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06089-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06088-0

  • Online ISBN: 978-3-319-06089-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics