Skip to main content

The Parameterized Complexity of Domination-Type Problems and Application to Linear Codes

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8402))

  • 926 Accesses

Abstract

We study the parameterized complexity of domination-type problems. (σ,ρ)-domination is a general and unifying framework introduced by Telle: given σ, ρ ⊆ ℕ, a set D of vertices of a graph G is (σ,ρ)-dominating if for any v ∈ D, |N(v) ∩ D| ∈ σ and for any v ∉ D, |N(v) ∩ D| ∈ ρ. Our main result is that for any σ and ρ recursive sets, deciding whether there exists a (σ,ρ)-dominating set of size k, or of size at most k, are both in W[2]. This general statement is optimal in the sense that several particular instances of (σ,ρ)-domination are W[2]-complete (e.g. Dominating Set). We prove the W[2]-membership for the dual parameterization too, i.e. deciding whether there exists a (σ,ρ)-dominating set of size n − k (or at least n − k) is in W[2], where n is the order of the input graph. We extend this result to a class of domination-type problems which do not fall into the (σ,ρ)-domination framework, including Connected Dominating Set. We also consider problems of coding theory which are related to domination-type problems with parity constraints. In particular, we prove that the problem of the minimal distance of a linear code over \({\mathbb{F}}_{q}\) is in W[2] when q is a power of prime, for both standard and dual parameterizations, and W[1]-hard for the dual parameterization.

To prove the W[2]-membership of the domination-type problems we extend the Turing-way to parameterized complexity by introducing a new kind of non-deterministic Turing machine with the ability to perform ‘blind’ transitions, i.e. transitions which do not depend on the content of the tapes. We prove that the corresponding problem Short Blind Multi-Tape Non-Deterministic Turing Machine is W[2]-complete. We believe that this new machine can be used to prove W[2]-membership of other problems, not necessarily related to domination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L., Kratsch, D.: A note on fixed parameter intractability of some domination-related problems (1994) (unpublished)

    Google Scholar 

  2. Cattanéo, D., Perdrix, S.: Parameterized complexity of weak odd domination problems. In: Gąsieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 107–120. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Cesati, M.: Perfect Code is W[1]-complete. Inf. Proc. Let. 81, 163–168 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67, 654–685 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cesati, M., Di Ianni, M.: Compution models for parametrerized complexity. MLQ 43, 179–202 (1997)

    Article  MATH  Google Scholar 

  6. Chapelle, M.: Parameterized Complexity of Generalized Domination Problems on Bounded Tree-Width Graphs. Computing Research Repository, abs/1004.2 (2010)

    Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness I: Basic Results. SIAM Journal on Computing 24, 873–921 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness II: On Completeness for W[1]. Theoretical Computer Science 141, 109–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Downey, R.G., Fellows, M.R., Vardy, A., Whittle, G.: The Parametrized Complexity of Some Fundamental Problems in Coding Theory. SIAM Journal on Computing 29, 545–570 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)

    Google Scholar 

  11. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. In: Texts in theoretical computer science. Springer (2006)

    Google Scholar 

  13. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Information Processing Letters 52(1), 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Golovach, P.A., Kratochvìl, J., Suchỳ, O.: Parameterized complexity of generalized domination problems. Discrete Applied Mathematics 160(6), 780–792 (2009)

    Article  Google Scholar 

  15. Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum secret sharing with graph states. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 15–31. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Gutin, G., Kloks, T., Lee, C.-M., Yeo, A.: Kernels in planar digraphs. Journal of Computer and System Sciences 71(2), 174–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Halldórsson, M.M., Kratochvíl, J., Telle, J.A.: Mod-2 independence and domination in graphs. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 101–109. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Kloks, T., Cai, L.: Parameterized tractability of some (efficient) y-domination variants for planar graphs and t-degenerate graphs. In: International Computer Symposium, ICS (2000)

    Google Scholar 

  19. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. Journal of Discrete Algorithms 7, 181–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Telle, J.A.: Complexity of Domination-Type Problems in Graphs. Nordic Journal of Computing 1, 157–171 (1994)

    MathSciNet  Google Scholar 

  21. Telle, J.A., Proskurowski, A.: Algorithms for Vertex Partitioning Problems on Partial k-Trees. SIAM Journal on Discrete Mathematics 10, 529–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cattanéo, D., Perdrix, S. (2014). The Parameterized Complexity of Domination-Type Problems and Application to Linear Codes. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2014. Lecture Notes in Computer Science, vol 8402. Springer, Cham. https://doi.org/10.1007/978-3-319-06089-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06089-7_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06088-0

  • Online ISBN: 978-3-319-06089-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics