Skip to main content

Mean Shift Based Feature Points Selection Algorithm of DSA Images

  • Conference paper
Health Information Science (HIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8423))

Included in the following conference series:

Abstract

In Digital Subtraction Angiography (DSA) image registration algorithm, the precision of the control points as well as their number and the distribution in image determine the accuracy of geometric correction and registration. Control points usually adopt the grid points; however, a more effective method is to extract control points adaptively according to the image feature. In this paper, a control point’s selection algorithm of DSA images is proposed based on adaptive multi-Scale vascular enhancement, error diffusion and means shift algorithms. Experimental results show that the proposed algorithm can adaptively put the control points to blood vessels and other key image characteristics, and can optimize the number of control points according to practical needs, which will ensure the accuracy of DSA image registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schuldhaus, D., Spiegel, M., Redel, T., Polyanskaya, M., Struffert, T., Hornegger, J., Doerfler, A.: Classification-based summation of cerebral digital subtraction angiography series for image post-processing algorithms. Physics in Medicine and Biology 56(1), 1791–1802 (2011)

    Article  Google Scholar 

  2. Sang, N., Li, H., Peng, W., Zhang, T.: Knowledge-based adaptive threshold segmentation of digital subtraction angiography images. Image and Vision Computing 25(8), 1263–1270 (2007)

    Article  Google Scholar 

  3. Cebral, R., Castro, A., Appanaboyina, S., Putman, M., Millan, D., Frangi, F.: Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity. IEEE Transactions on Medical Image 24(4), 457–467 (2005)

    Article  Google Scholar 

  4. Zwiggelaar, R., Astley, M., Boggis, R., Taylor, J.: Linear Structures in Mammographic Images: Detection and Classification. IEEE Transactions on Medical Image 23(9), 1077–1086 (2004)

    Article  Google Scholar 

  5. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial gray-scale. Proceeding Society Information Display 17(2), 75–78 (1976)

    Google Scholar 

  6. Goldschneider, J., Riskin, E., Wong, P.: Embedded multilevel error diffusion. IEEE Transactions on Image Processing 6(7), 956–964 (1997)

    Article  Google Scholar 

  7. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory 21(1), 32–40 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)

    Article  Google Scholar 

  9. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: IEEE Int. Conf. Computer Vision, vol. 1, pp. 438–445 (2001)

    Google Scholar 

  10. Jimenez-Alaniz, J., Pohl-Alfaro, M., Medina-Banuelos, V., Yanez-Suarez, O.: Segmenting brain MRI using adaptive mean shift. In: 28th International IEEE EMBS Annual Conference, pp. 3114–3117 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, F., Li, C., Kong, S., Liu, S., Cui, Y. (2014). Mean Shift Based Feature Points Selection Algorithm of DSA Images. In: Zhang, Y., Yao, G., He, J., Wang, L., Smalheiser, N.R., Yin, X. (eds) Health Information Science. HIS 2014. Lecture Notes in Computer Science, vol 8423. Springer, Cham. https://doi.org/10.1007/978-3-319-06269-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06269-3_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06268-6

  • Online ISBN: 978-3-319-06269-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics