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Abstract

Design patterns are a highly successful technique in software engineering, giving
a reusable ‘best practice’ solution to commonly occurring problems in software
design. Taking inspiration, this paper introduces proof patterns, which aim to
provide a common vocabulary for solving formal methods proof obligations by
capturing and describing solutions to common patterns of proof, hence increas-
ing effectiveness.
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Chapter 1

Introduction

A key advantage of formal specification of software systems using mathemat-
ical models is a precise characterisation of the requirements that is amenable
to scrutiny through deductive reasoning methods. Popular formal methods lan-
guages like Z, B, and VDM [1, 19, 30], share a similar methodology: a software
system is modelled at an abstract level and refined stepwise to a more con-
crete representation by infusing the model with design decisions and concrete
datatypes. In each level of ‘refinement’ a system state is usually described as
an abstract datatype or record with an invariant attached. Operations of the
system as described with preconditions and postconditions that may modify
the system state. The correctness guarantees provided by ‘formal methods’
stem from the proof obligations (POs) that are generated for any given model.
Within formal methods POs tend to have a predictable shape. Furthermore, the
process of model design tends to exhibit predictable shapes. This repetition in
the phrasing of theorems and in the solution to particular modelling problems
suggests the possibility of repeated proofs. This repetitive notion of proof has
been corroborated in practice from our personal experiences [10, 12, 13].

One of the main challenges for the widespread adoption of formal methods
in industry is the expense, both in time and human expertise, of solving these
proof obligations. For example, industrial partners using B claim each PO cost
38 euros! Our aim is to enable less experienced proof engineers to identify
common situations and tackle them effectively by the use of proof patterns.

In Software Engineering, design patterns are a highly successful technique
for providing solutions to frequently occurring problems in software design [14].
Patterns give a template description of how to solve a particular problem that
can be used in many different situations. Patterns have evolved to become best
practices that must be implemented and are easily recognised, whence providing
a common vocabulary for describing solutions. Similarly, mathematicians do not
often talk about the details of their proofs: they have a common parlance of high-
level proof patterns (e.g. by induction, ε-δ proofs in analysis), that enables fellow
mathematicians to understand and recreate proofs. It is our aim in this paper
to introduce proof patterns for formal methods. Specifically, we hypothesise:
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CHAPTER 1. INTRODUCTION

Similar to software engineering design patterns, proof patterns exists
for formal methods proof obligations. Furthermore, under the right
circumstances, they are applicable over multiple methods.

This paper presents several proof patterns useful for formal methods proof
obligations across methods. We describe these patterns similarly to software
design patterns, and although we use a concrete example problem for explaining
the patterns, we believe that they transfer across problems, and sometimes
across provers. We provide examples of each pattern in action using a VDM
model of a heap memory manager is used [20, Ch. 7]. We have formalised it in
the Isabelle and Z/EVES theorem provers [24, 25]. We believe that too small
an example is unlikely to clarify the issues with patterns in proof obligations,
and that industrial examples do not fit in a paper (yet are amenable to our
patterns).

In the next section, we briefly introduce software design patterns, formal
methods, and our running example. Then, Section 3 describes our core proof
patterns with examples of each in action. We introduce higher-level methodolog-
ical patterns in Section 4 and further exemplify our proof patterns with a worked
example on a feasibility proof obligation in Section 5. Finally, we conclude with
related and future work in Section 7.
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Chapter 2

Background

2.1 Patterns

Like with Design Patterns for software engineering [14], we see proof patterns as
a combination of informal description, examples of use, and a set of attributes
of discourse explaining the conditions for which the proof pattern may apply.
A classic example of a design pattern is the iterator pattern.

We are trying to do for proof what design patterns did for software devel-
opment: create a discourse of ideas and processes that might omit the specifics
of “how”, unless one is happy to look at the gory details (i.e. not only of large
proofs, but of large amounts of failed proof attempts). We try to give precise
and accountable details as much as possible, yet we are still some way from
having an expressive enough declarative proof language to capture proof intent.

2.2 Heap problem

In this section, we provide an overview of a heap memory manager, modelled
in VDM [20, Ch.7], that we use throughout this paper to exemplify our proof
patterns. We have formalised and proved all proof obligations associated with
the first two levels of refinement for this model in the Isabelle [24, 23] and
the Z/EVES [25] theorem provers. A full description of this formalisation,
including a detailed description of the translation between a VDM model and
its representation in Isabelle, can be found in [10], and at www.ai4fm.org/tr.
The model consists of two datatypes and two operations:

Loc: the type of a single adjacent memory location, represented as N.

Free: the type of the heap as a collection of all free locations. At level 0, it is
represented as the set Free0 4 Loc-set, whereas at level 1, it is represented
as a map from start location to size that is disj oint and separate:

Free1 = Loc
m−→ N1

inv (f ) 4 disj (f ) ∧ sep(f )

5
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2.2. HEAP PROBLEM CHAPTER 2. BACKGROUND

disj (f ) 4
∀l , l ′ ∈ dom f · l 6= l ′ −→ locs-of (l , f (l)) ∩ locs-of (l ′, f (l ′)) = φ

sep(f ) 4 ∀l ∈ dom f · (l + f (l)) /∈ dom f

The invariant conditions ensure that the range of locations identified by
any two map elements (defined as {l . . . l + f (l)-1} by locs-of ) do not
intersect (disj ) and that contiguous memory regions are as large as possible
(sep). That is, for any element l in the map, the location immediately
to the right of its memory region (l + f (l)) is not the start location for
another region: l + f (l) /∈ dom (f ). We write F1-inv(f ) to refer to this
invariant of Free1.

NEW: takes a size and heap as input and returns a starting location for a
contiguous chunk of memory of the appropriate size after updating the
state.

DISPOSE: returns a contiguous chunk of memory back to the heap. This
operation takes a start location and size as parameters, updating the state.

At level 0, these operations are defined as

NEW 0 (s:N1) r : Loc

ext wr f0 : Free0

pre ∃l ∈ Loc · locs-of (l , s) ⊆ f0

post locs-of (r , s) ⊆↼−f0 ) ∧
f0 =

↼−
f0 − locs-of (r , s)

DISPOSE0 (l : Loc, s:N1)

ext wr f0 : Free0

pre locs-of (l , s) ∩ f0 = { }

post f0 =
↼−
f0 ∪ locs-of (l , s)

Set difference and set union characterise the removal and addition of elements
to the heap. The precondition on NEW 0 ensures that there is a contiguous re-
gion of the appropriate size, whereas DISPOSE0 ensures the range of locations
being returned is not already free. At level 1, the NEW operation is:

NEW 1 (s:N1) r : Loc

ext wr f1 : Free1

pre ∃l ∈ dom f1 · f1(l) ≥ s

post r ∈ dom
↼−
f1 ∧ (

↼−
f1 (r) = s ∧ f1 = {r} −C

↼−
f1 ∨

↼−
f1 (r) > s ∧ f1 = ({r} −C

↼−
f1 ) ∪m {r + s 7→↼−

f1 (r)− s})

NEW 1 has two behaviours depending on whether a location of exactly the
required size or strictly larger has been located, If the size matches, then that
element is removed from the map; if the map element refers to a larger region,
then the remaining locations in the region must be added back to the heap
(hence the map union). The precondition captures both cases using ≥. We
describe DISPOSE1 in Section 5 as part of a worked example of solving a
feasibility proof obligation with proof patterns. The retrieve between these two
levels of refinement is given by function f0 = locs(f1): it generalises locs-of over
the domain of f1 using distributed union (i.e. locs =

⋃
{locs-of (x , f1(x )) | x ∈

dom f1}).
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Chapter 3

Proof Patterns

In the following sections we describe our proof patterns. Despite the specificity
of the Heap example, these patterns apply in most problems of interest within
formal methods POs. Wherever patterns are specific enough, we provide proof
snippets in Isar: a human readable formal proof language for Isabelle [29].

3.1 Witnessing

One of the most important steps to solve feasibility (and reification) POs is
finding appropriate witnesses for the outputs and updated state. The general

form of these POs is ∀↼−̄σ , ī ·pre-OP(
↼−̄
σ , ī) −→ ∃σ̄, ō ·post-OP(

↼−̄
σ , ī , σ̄, ō), where

↼−̄
σ and ō are the initial state and inputs and σ̄ and ō represent a sequence of
updated state variables and outputs. In general, finding a witness is a difficult
task, but there are two common patterns that allow some of the existentials
to be discharged easily and a third pattern to help the engineer “discover” the
right unknown witness.

One point. Often the value of an updated state variable is given explicitly in
the postcondition as an equality, σi = t , where t is an expression in terms of the
initial state. This can be discharged by a generalised version of the “one-point’
proof rule in [30, Sect. 4.2], which Z/EVES implements and could be encoded in
Isabelle, though at present we discharge it manually. The rule avoids providing
any explicit instantiation, regardless of variable order. If t is a complicated
expression, one may wish to introduce and informative name x ′ = t into the
assumptions and use the one-point rule with x ′ instead, since t is substituted
for σi everywhere it is used in the postcondition.

Existential precondition. A more subtle situation involves an existential
precondition (e.g. pre-OP 4 ∃x · P x ). This often means that x , once elimi-
nated, is ‘supposed to be’ mapped to a particular witness. Notice that inputs
to preconditions can also be viewed as existentially quantified assumptions and
are also suitable. This pattern occurs when a nondeterministic choice for the
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3.2. INVARIANT BREAKDOWN CHAPTER 3. PROOF PATTERNS

postcondition is required and a value satisfying the precondition can be picked.
This means that we can often match an “existential” precondition variable by
trying to match the P x from the precondition within the postconditions.

Dummy. When a witness guess is unknown, making progress in the proof
serves to clarify the appropriate choice. To make progress, one should instantiate
the existential quantifier with an arbitrary variable, then proceed. Once the goal
is rewritten taking the witness into account, resulting subgoals can be analysed
for evidence pointing to appropriate instantiations.

Example. In the heap case study, both one-point and existential precon-
dition patterns occur in the feasibility PO for NEW 1 and DISPOSE1. After
performing case analysis, the first PO is as follows:
∀f s · F1-inv(f ) ∧ (∃l ∈ dom f · f (l) = s) −→
(∃f ′ r ′ · F1-inv(f ′) ∧ r ′ ∈ dom f ∧ f (r ′) = s ∧ f ′ = {r} −C f )

The witness for f ′ can be found using the one-point rule for f ′ = {r} −C f . This
entails some existential introduction massaging, which Z/EVES does automat-
ically and we encode in Isabelle. Notice we cannot use r in the witness as it
is also being quantified. The witness for r is the l introduced by existential
elimination on the precondition. The witnessing pattern reduces this feasibility
proof obligation to showing that the invariant holds on the updated state as
F1-inv({l}−C f ), which is ready for invariant breakdown as described in the next
Section.

3.2 Invariant breakdown

One often needs to show that the updated state preserves the invariant, as in
the example above. When the updated state is defined in terms of the original
state, then we move the invariant predicate towards the original state in order to
use the assumption the original invariant held. This can be seen as a specialised
form of the rippling proof plan for solving step cases of induction proofs [4].
Rather than delve into the details of rippling, we explain this pattern as an
operation on invariant proofs.

The situation that triggers this pattern is as follows. We need to solve
inv(h(σ)) where we know inv(σ) holds and the updated state is h(σ). As a
simple example, imagine the state is a set of natural numbers X and the up-
dated state is f (X ) ∩ g(X ), therefore giving us a proof obligation inv(X ) −→
inv(f (X ) ∩ g(X )). To apply the invariant breakdown pattern, we aim to move
the invariant predicate closer to the original invariant terms: distributing it over
set intersection in this case. Furthermore, the subterms that contain the origi-
nal state would be generalised to an arbitrary element. This means speculating
a lemma: P −→ inv(A) −→ inv(B) −→ inv(A ∩ B), where P expresses side-
conditions under which the lemma must hold. The application of this lemma
leads to inv(f (X )) and inv(g(X )) as new subgoals, we need to apply the in-
variant breakdown pattern again until we get inv(X ) itself as assumptions to
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CHAPTER 3. PROOF PATTERNS 3.3. WEAKENING LEMMAS

the speculated lemma. While the invariant breakdown pattern does not solve
the goal, it provides a set of lemmas that, if proven, will lead to a proof of the
top-level goal. We call them weakening lemmas (see Section 3.3) and they are
available to function symbols either unknown or with little automation.

The process of discovering such side-conditions P is non-trivial and requires
expertise. It can also be helped, however, by model-checking and counter-
example checking: take P as true and run a counterexample checker, for ex-
ample. Another source of useful information is the definitions of the opera-
tors involved, in the case above {inv , f , g ,∩}. Together with counter-examples
found, they expose the clues to the appropriate side-conditions, which might
themselves be lemmas to be proved. In the worst case, when side-conditions are
difficult to guess, one might need to create a new concept specific to the domain
of the problem.

Example. In the heap, this pattern was used frequently, since the two com-
ponents of the invariant (separateness and disj ointedness) needed to be proved
for the updated state in both the NEW and DISPOSE operations. In NEW 1,
for example, we are required to show the following goal holds.

Disjoint(({r} −C
↼−
f1 )∪m{r + s 7→↼−

f1 (r)− s})

where we have a single occurrence of the original state f1 as itself, which gives
us some indication of how to breakdown this formula by distributing Disjoint
over map union (∪m). Generalising, we speculate a lemma:

Q −→ Disjoint(f ) −→ Disjoint({a 7→ b}) −→ Disjoint(f ∪m{a 7→ b})

Ignoring side-conditions for the moment, this gives us the following subgoals:

Disjoint({r} −C
↼−
f1 ) Disjoint({r + s 7→↼−

f1 (r)− s}))

The second goal does not contain the original state, and can be solved trivially.
For the first goal, we need to repeat the invariant breakdown process on domain
filtering (−C). This allows us to solve the goal using the assumption.

3.3 Weakening lemmas

When one does not have enough information about function symbols appearing
in invariant breakdown, we need weakening lemmas relating these symbols.

For instance, POs over complex state often include records and data struc-
tures the prover knows little about (e.g. a map from a record to a list). Naively
dealing with the presence of these (novel use of) symbols often leads to either
polluted (and repetitive) proofs, or to overly specific lemmas. Instead, we need
lemmas that weaken specific parts of the goal (for backward reasoning) or spe-
cific parts of the hypothesis (for forward reasoning). This breaks down the task
to manageable pieces, up to the point where the prover has automation for
function symbols involved, as in the example above involving inv( ∩ ).

When discharging proof obligations for the heap we came across surprising
points of failure. The refinement and feasibility POs for NEW and DISPOSE
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3.4. TYPE BRIDGING AND ZOOMINGCHAPTER 3. PROOF PATTERNS

motivated the creation of lemmas for both Z/EVES and Isabelle, which are fully
documented in [10].

Isabelle proofs. From the pattern for the feasibility proof, we provide weak-
ening lemmas to enable automation on our given witnesses This unpicking of
the various parts of the feasibility proof obligation leads to the suggestion of
lemma shapes up to the point where available lemmas apply. Once these link-
ing (weakening) lemmas are in place, Isabelle knows enough about involved
operators and can automatically discharge them. Bridging this gap is where
expert input is needed. For example, to represent VDM maps in Isabelle we
use (Loc ⇀ N), which is a total function with an optional range type. Isabelle
has useful operators like map update (†), yet not map union (∪m), which we
define as map update over maps with disjoint domains. Map union features in
proofs for NEW 1 and DISPOSE1, and we needed lemmas linking the new op-
erator to a representation known to Isabelle, namely map update. Thus, while
performing invariant breakdown, we identify the need for weakening lemmas
about distributing VDM operators over invariant subparts. Similar lemmas for
other function symbols were also added, where different side-conditions deter-
mine where such weakening lemmas can be used. In total we have 51 of them
for Isabelle.

Z/EVES proofs. Arguably, given Z already contains a mathematical toolkit
akin to VDM’s, it is easier to represent a VDM model in Z/EVES. This means,
many of the weakening lemmas we need are already available. The lesson from
this though is that weakening lemmas over known (or reused) function symbols
do indeed transfer across problems, and that is our experience. Some of the
Isabelle weakening lemma were informed by previous experience with Z/EVES.

We declare weakening lemmas in Z/EVES as a rewrite rules, which the
prover uses automatically during simplification and is akin to Isabelle’s simp
attribute on lemmas. These lemmas are not quite solving, but distilling the
problem through the proof engineering process described by our proof patterns.
These kinds of lemmas are not usually transferable across problems, yet the
general principles/patterns behind them are.

3.4 Type bridging and zooming

When discharging weakening lemmas and/or discovering side-conditions of in-
variant breakdown, one often needs to add explicit (novel, if obvious) infor-
mation about type relationships and their layers of abstraction/representation.
These lemmas establish algebraic properties between new user-defined opera-
tors, and known (set theory, say) operators.

Provers have preferred directions for reasoning, be that left-right simplifica-
tion, or a “waterfall” [22] involving generalisation and simplification. We call
“type bridging” all those auxiliary lemmas necessary for weakening the goal (in
backward proof) towards true by substituting it by “simpler” goals up to the
point they meet the available hypothesis. For example, when a conditional rule
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CHAPTER 3. PROOF PATTERNS3.4. TYPE BRIDGING AND ZOOMING

fails to match, it is often because its side-condition could not be discharged.
Often these conditions are just type checking like parameters are within the
involved function symbols declared types. This gives rise to a set of specialised
type-inference lemmas for the involved expressions.

The mathematical toolkits of Z, Event-B, and VDM are defined in terms
of maps, sequences, sets, and relations. User-defined functions are often given
in terms of operators with higher automation, in which case the appropriate
expansion lemma to the function symbol with most automation is needed. In
methods such as Z and VDM, the notion of records is ubiquitous yet goals in-
volving records do not require the prover to know about all the record structures,
hence specific lemmas exposing a record’s properties are often needed to stream-
line proofs (i.e. in [12], such record slicing reduced a 45-page long cluttered goal
into 16-chunks of related intent about a page each).

This type bridging, where the lemma is there to help bridge notions be-
tween operators of interest (i.e. user-defined and set theory in this case) en-
hances proof automation. Similarly, when moving between layers of abstrac-
tion/representation, the right level of definition expansion needs to be taken
into account. That is, we need to instruct the prover what “zoom” to use, and
we do not want to expand all definitions to sets or predicates, but rather keep
definitions at different “zoom” levels, adding lemmas between levels as needed.

Such type judgements can also work in forward proof by strengthening hy-
pothesis of interest. For instance, given a goal involving an injective map in-
verse (f˜(f (x ))) and an assumption x ∈ dom f , we could extend the hypoth-
esis to say that f˜(f (x )) = x . This usually makes the prover substitute the
goal with the simpler RHS involving x . The amount and shape of these auxil-
iary lemmas are determined by the direction a prover takes, as well as by the
amount of previously available information for the given operators. Finally,
certain invariants are mathematically sensible (i.e. a sequence of size up to 10,
s ∈ T ∗ ∧ card(s) ≤ 10), yet hard to use in proof because of tricky operators like
cardinality (card(s)) that involve bijective functions. Equivalent versions of the
same invariant using just set theory (i.e. sequence indices range from 1 up to
10, inds s ⊆ 1, . . . , 10) can be proved as type bridging lemmas, hence providing
better automation.

Example. The Isabelle proof for the heap example we added a (congruence)
lemma that required no extra side-conditions, hence directly simplifying the
goal by removing one of the operators (i.e. sep(x −C f ) = sep(f )). It states
that subtracting from the map’s domain preserve separation. The presence of
the operator to absorb on the LHS tells the prover our preference for the RHS
expression as a result. Moreover, the free variables in weakening lemmas for sep
needed for the feasibility of NEW 1 were reused in DISPOSE1, hence making
the feasibility proof script itself much like the one for NEW 1 (i.e. their common
strategy being reused modulo key lemmas discovered).

11
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3.5 Retrieve state update

When refining a model, a retrieve relation maps concrete to abstract state rep-
resentations. A key PO is that if the postcondition holds at the concrete level,
then it holds in the abstract. This proof obligation is called narrow postcon-
dition in VDM (correctness in Z). A common feature in refinement is a type
jump between the abstract and the concrete levels. For example, the heap is
represented as a set of locations at level 0 and refined to a partial map in level
1.

In these situations where the updated state at the concrete level is described
using an equality σ = f (↼−σ ) for some f , or when we have a functional retrieve,
we can apply a pattern called retrieve state update to conjecture lemmas that
map across the type jump. To prove the postcondition we can use one-point
witnessing under the retrieve to solve retr(σ) = g(retr(↼−σ )) for some function g
on the original state, where retr(con) = abs is a function from the concrete to
the abstract state. After the state update with the equality above, this is really:
retr(f (↼−σ )) = g(retr(↼−σ )). In this situation, we have three pieces of information:
a) the structure of the retrieve function mapping concrete and abstract; b) a set
of operators at the concrete level (used in f ); and, c) a set of operators at the
abstract level (used in retr and g). To solve this goal, we must first translate the
operators in f to those of g by distributing the retrieve function. For example,
the narrow postcondition PO for the NEW operation on the heap is:

retr({r} −C
↼−
f ) = locs(

↼−
f )− locs-of (r , s)

The ‘zoom’ level for the abstract state is that of sets and the level of the concrete
is maps. The application of this pattern suggests distributing retr over domain
filtering, which suggests a possible lemma of the form

P −→ retr({r} −C
↼−
f ) = Q(retr(

↼−
f ), {r})

where P expresses side-conditions and Q is some undetermined operation on
sets. At this point the retrieve function is operating solely on the state, so we
stop applying the pattern. Comparison with the right hand side of our goal
makes clear what Q should be, but this is not always so straightforward. Thus,
just like invariant breakdown, the proof pattern can help suggest an attack, but
it requires input from the proof engineer.

3.6 Hidden Case Analysis

Hidden case analysis is the insertion of a lemma of the form P ∨ ¬P to the
hypotheses and the subsequent breakdown of the proof obligation into the case
where P holds and the case where ¬P holds. This pattern is common to math-
ematics as well. It is often used in situations where it is not clear what infor-
mation the precondition provides to prove the postcondition holds, despite it
being available, if hidden. A few examples of where this occurs are:

• Certain predicate calculus patterns in either pre/postconditions lend them-
selves to hidden cases analysis. Conditional postconditions (P −→ Q) in-
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dicate a case split on the condition. Disjunctive postconditions often are
associated with hidden disjuncts of the precondition (e.g. as in NEW 1).

• Non-linear arithmetic operators occur in the precondition, such as ≥, and
also when negation and non-linear arithmetic are combined.

• Sets, sequences, and maps in preconditions might require case analysis for
emptiness; and so on.

For example, the disjunction in the postcondition for the NEW 1 operations

(
↼−
f1 (r) = s∧f1 = {r}−C

↼−
f1 ) ∨ (

↼−
f1 (r) > s∧f1 = ({r}−C

↼−
f1 )∪{r+s 7→↼−

f1 (r)−s})

suggests that a case analysis must be performed on the preconditions. In this
case, introducing f1(l) = s ∨ f1(l) 6= s allows us to derive from the precondition
(∃l ∈ dom f1 ·f1(l) ≥ s) that f1(l) > s ∨ f1(l) = s. Each case in the precondition
is explicit as a goal in each side of the disjunction, although the disjunct with
the precondition was hidden by ≥.

3.7 Shaping

In formal methods, proof obligations tend to be large with lots of information
present in the goal and assumptions. This can often obscure the overall structure
of a goal. In the shaping proof pattern, we utilise some of this information
to simplify the goal before applying an important lemma or applying another
proof pattern, such as invariant breakdown. A shaping pattern consists of a
set of shaping lemmas, which are equalities between a sub term of the goal
and a simpler representation, and a set of targeted rewrites that simplify the
goal. The benefit of using this proof pattern before applying an important
weakening lemma is that it will considerably simplify the resulting subgoals. In
mathematics, this often occurs when trying to get rid of some difficult operator
like square root, so one squares both sides of an equation, say.

In the heap example, shaping was used frequently to simplify some of the
details of the DISPOSE1 postcondition in the feasibility and refinement proofs,
where prior case analysis had provided further information about the structure.
We give an example of shaping (and the case analysis that triggers it) next.
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Chapter 4

Methodological Patterns

The top-level POs for a model, such as operation feasibility, tend to have similar
structure that can be exploited to increase proof effectiveness. We call such
similarities methodological patterns. In this section we identify methodological
patterns that are independent of specification method,namely the top-level goal
of operation feasibility and data refinement proof obligations of B, Z, and VDM.
The strategy to handle such goals is mostly always the same. We use VDM POs
in our running example.

4.1 Feasibility (or satisfiability) obligations

Example from the heap. The full feasibility proof obligation from the NEW
operation of the heap problem is as follows:

∀ ·f s. F1-inv f ∧ nat1 s ∧ (∃ ·l∈dom f . s ≤ the (f l)) −→
(∃ ·f ′ r ′. F1-inv f ′ ∧ (r ′ ∈ dom f ∧ the (f r ′) = s ∧ f ′ = {r ′} -/ f ∨

r ′ ∈ dom f ∧ s < the (f r ′) ∧ f ′ = {r ′} -/ f ∪m [r ′ + s 7→ the (f r ′) - s]) )

where f is the initial state representing the heap, s is the input, representing the
amount of space required. The existentially quantified f ′ is the updated state,
and r represents the output location (marking the start of the allocated space).
The preconditions consist of an invariant on f , a simple typing precondition on
the input, and an existential precondition. The postcondition is a disjunction
of the two possible cases discussed in Section X.

The first step of a feasibility pattern is to perform any necessary trans-
formations and structural introduction and elimination rules (so-called ‘safe’
rules’) to fully expose the goal we wish to solve. The combination of disjunc-
tion in the conclusions and the existential precondition hints at a case split
(with ≤), which results in two goals. We apply the feasibility pattern to each.
We’ll focus on the > case in this example. The goal we need to solve is now:

14



CHAPTER 4. METHODOLOGICAL PATTERNS4.1. FEASIBILITY (OR SATISFIABILITY) OBLIGATIONS

F1-inv f
nat1 s
l ∈ dom f
the(f l) > s
∃ ·f ′ r ′. (r ′ ∈ dom f ∧ the (f r ′) = s ∧ f ′ = {r ′} -/ f ∨

r ′ ∈ dom f ∧ s < the (f r ′) ∧ f ′ = {r ′} -/ f ∪m [r ′ + s 7→ the (f r ′) ∧ F1-inv f ′

(Note that we have instantiated the existential precondition, thus l has joined
our set of fixed variables)

At this point, we wish to get rid of the disjunctions and choose one. Tech-
nically, we should do a search on all possibilities, but we can always distribute
the existentials to create a copy for each disjunction. Clearly in this case, we
choose the RHS:

∃ ·f ′ r ′. r ′ ∈ dom f ∧ s < the (f r ′) ∧ f ′ = {r ′} -/ f ∪m [r ′ + s 7→ the (f r ′) - s])
∧ F1-inv f ′)

Can we? Should we?
Tighten this upIt is at this point we can being the feasibility witnessing pattern. Here we

only have two variables to instantiate and decide on an ordering. We spot that f ′

is a single point , but it refers to r ′. Thus, we need to instantiate r ′ before (this
requires an existential swap). For r ′, we note that the postconditions involving
r ′ are contained within the assumptions, only referring to l . This confirms the
intuition that, since l was an existential precondition it represents an output.
We can then instantiate r ′ as l and f ′ = {r ′} -/ f ∪m [r ′ + s 7→ the (f r ′) - s].

All of the postconditions can then be discharged by either reflexivity or by
assumption (as a result of our feasibility witness choices). We are left with the
invariant to solve:

F1-inv f
F1-inv({r ′} -/ f ∪m [r ′ + s 7→ the (f r ′) - s])

Or rather, since the F1-inv

is a conjunction of individual parts of an invariant, we have a goal for each. Let’s
take Disjoint , for example:

Disjoint f
Disjoint({r ′} -/ f ∪m [r ′ + s 7→ the (f r ′) - s])

To this, we apply the invariant breakdown strategy. We see that the top
symbol in the updated state is map union ∪m and thus speculate a lemma:

Disjoint({r ′} -/ f ) −→ P −→ Disjoint({r ′} -/ f ∪m [r ′+ s 7→ the (f r ′) - s])
to break down the goal using the top level operator. We write P to represent to
unknown conditions that an expert must supply1. This breaks down our goal
to

Disjoint f
Disjoint({r ′} -/ f )

which is represented as a further lemma:

Disjoint(f ) −→ P −→ {r ′} -/ f )
which breaks down the goal so that we can use the invariant assumption. Thus,
straightforward application of proof patterns has reduced the PO to proving
two lemmas (both of which actually involve subtle side-conditions) and can be
generalised.

1Though, of course, we could always supply the full suite of PO conditions
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FIX ME: Rewrite the invar breakdown to generalise the side of an operator
that contains the assumption! That is, so that it would conjecture the
general disjoint-unionm-singleton lemma

4.2 Refinement obligations

Another class of proof obligations are those associated with data reification,
where data refinement establishes a link between different levels of design de-
cisions, from abstract to concrete representations. Refinement goals are well
structured and method independent. The pattern to handle them is similar
to the one for feasibility proofs. Its proof obligation may vary depending on
the kind of refinement done, yet the most common situation is forward simu-
lation. They are known as applicability and correctness (in Z), or widen-pre
and narrow-post in VDM, and are proved for every operation involved. The
widen-pre PO state that under a retrieve relation (or function) linking the ab-
stract and concrete state representations, the concrete precondition is at least
that same or weaker than the abstract precondition.
∀↼−σa ,↼−σc · pre-AOP(↼−σa) ∧ R(↼−σa ,↼−σc ) ⇒ pre-COP(↼−σc )

Conversely, the narrow-post PO state that it is possible to find a corresponding
abstract (after) state satisfying the abstract postcondition under the retrieve,
providing the concrete postcondition and abstract precondition holds under the
retrieve.
∀↼−σa ,↼−σc , σc · pre-AOP(↼−σa) ∧ R(↼−σa ,↼−σc ) ∧ post-COP(↼−σc , σc)

⇒ ∃σa · R(σa , σc) ∧ post-AOP(↼−σa , σa)

The most difficult part in this category of proof obligation is to find an
appropriate retrieve linking the two representations, such that all operations
satisfy the two POs above. In practice, it is often necessary to adjust the
retrieve and revisit these two proofs for every operation involved.

The proof pattern to use in this situation is much like the one for feasibility
proofs. The widen-pre PO does not require witnessing, but invariant breakdown
now under the retrieve. The narrow-post PO is much like feasibility proof: first
find the appropriate abstract state witness to satisfy the abstract postcondition
given the concrete postcondition update. This will involve invariant-breakdown
on both POs for both abstract and concrete states.

A common case for this situation is when you have a retrieve function relating
both states, which in VDM is known as the adequacy PO. It states that for every
concrete state representation there exists only one abstract representation under
the retrieve.
∀↼−σc · ∃↼−σ a ·↼−σa = R(↼−σc )

When the retrieve is not defined as a function but a relation, yet only one
relating value exists, unique existential quantifier (∃! ·) is used. Proving ade-
quacy is useful because it establishes the abstract state witness to be used for
the narrow-post PO for every operation, hence simplifying the refinement proof
considerably. It is usually proved by induction over the types involved. In Z,
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this is known as functional refinement. Z also have a similar set of proof obliga-
tions for backward simulation, where resolution of nondeterminism is postponed
and it is as if the abstract state is simulating the concrete state by anticipating
its actions. The proof pattern to use is the same: witnessing and invariant-
breakdown.
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Chapter 5

Patterns in the heap

Rather than describe these patterns, we give a worked example of how the
patterns described in the previous section can be composed to help solve the
feasibility proof obligation for the DISPOSE operation at level 1. In a com-
panion technical report, we provide a detailed presentation of methodological
patterns [11]. The VDM operation is as follows:
DISPOSE1 (d : Loc, s:N1)

ext wr f : Free1

pre is-disj (locs-of (d , s), locs(f ))

post ∃below , above, ext ∈ Loc
m−→ N1 ·

below = {l | l ∈ dom f ∧ l +
↼−
f (l) = d}C f ∧

above = {l | l ∈ dom f ∧l = d+s}Cf ∧ext = above∪mbelow∪m{d 7→ s}∧
f = (dom below∪dom above−C

↼−
f )∪m{min-loc(ext) 7→ sum-size(ext)}

The inputs d and s are the start location and size of region to add back to the
heap. The precondition is similar to level 0: this time using locs to construct
the set of all free locations from the heap map.

The complexity in DISPOSE1 arises from the fact that the memory region
being added back to the heap may adjoin zero, one, or two other regions already
in the heap. Thus, to preserve the sep part of the invariant (e.g. memory regions
should be as large as possible), we must join them together. The map above
will adjoin the end of the region being added; below defines the map of elements
adjoining from the start. The extended map then consists of above, below , and
the disposed region in the middle. Updating the state is then a case of removing
above and below (using domain filtering) and adding a region that corresponds
to the minimum starting location and the sum of the sizes of the elements of ext .
To illustrate, for a heap f = {0 7→ 4, 8 7→ 3}, DISPOSE1(4, 4) would result in
the updated f = {0 7→ 11}. This is because above = {8 7→ 3}, below = {0 7→ 4},
and ext = {0 7→ 4, 4 7→ 4, 8 7→ 3}.
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CHAPTER 5. PATTERNS IN THE HEAP

Proof of DISPOSE1 feasibility by patterns.

Step 1: representation transformation. This proof pattern can be used
optionally at the start of any proof in order to make a representational change
to simplify the proof. All that is required is a lemma which equates both POs.
In the case of DISPOSE1, we gave explicit definitions for above, below , and
ext , which makes it easier to deal with existential quantifiers, and we prove this
alternative definition equal to the original. It is worth mentioning one ought
not change the model for the sake of proof alone, as this often impairs model
clarity.

Step 2: safe decomposition. Not a formal methods proof pattern per se,
but safe decomposition is used as a standard technique in automated reasoning
to break down fixed variables, hypotheses and conclusions of a goal. We extend
this technique in our Isabelle development to unfold the definitions of pre-DIS1
and post-DIS1-ALT a single zoom level. The result, given as a declarative
Isabelle/Isar proof script is as follows:

theorem DIS1-feas: (∀ · f d s . pre-DIS1 f d s −→ (∃ · f ′ . post-DIS1 f d s f ′))
proof (subst dispose-feas-transform) — The transformation step
show (∀ · f d s . pre-DIS1 f d s −→ (∃ · f ′ . post-DIS1-ALT f d s f ′))
unfolding pre-DIS1-def post-DIS1-ALT-def
proof (intro allI impI , elim conjE) — Safe decomposition
fix f d s assume inv : F1-inv f and pre: (locs-of d s) ∩ (locs f ) ={}
show ∃ ·f ′. f ′ = (dom (below f d) ∪ dom (above f d s)) -/ f ∪m

[min-loc (ext f d s) 7→ sum-size (ext f d s)] ∧ F1-inv f ′

gap — The gap represents the area of the proof still to solve
qed

qed

Step 3: witnessing. In this case, witnessing is straightforward as we have
a one-point existential. The resulting proof script replaces the previous gap.

show ∃ ·f ′. f ′ = (dom (below f d) ∪ dom (above f d s)) -/ f ∪m
[min-loc (ext f d s) 7→ sum-size (ext f d s)] ∧ F1-inv f ′

proof(rule exI , rule conjI , rule refl) — Single-point witnessing with exI
show F1-inv ((dom (below f d) ∪ dom (above f d s)) -/ f ∪m . . . )
gap

qed

Step 4: hidden case analysis. At this point, we could apply the invariant
breakdown pattern, but an expert proof engineer notes that the definition of
above and below means it is either empty or a singleton map. Thus, the next
proof step is to apply case analysis on both above and below, resulting in four
separate cases to be solved. We focus on the first, where above = below = φ.

Step 5: shaping. We again postpone invariant breakdown and perform
the shaping pattern since we have added the hidden case analysis information
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above to the hypotheses. We now know, for example, that filtering the (empty)
domains of above and below from f will have no effect. The result of case analysis
and shaping leaves another proof gap as:

proof (cases below f d = empty , cases above f d s = empty) — case analysis
assume below-empty : below f d = empty and above-empty : above f d s= empty
have ab-shape: (dom (below f d) ∪ dom (above f d s)) -/ f = f gap
have min-loc-shape: min-loc (ext f d s) = d gap
have sum-size-shape: sum-size (ext f d s) = s gap
show ?thesis
proof (subst ab-shape, subst min-loc-shape, subst sum-size-shape)
show F1-inv (f ∪m [d 7→ s])
gap

qed
. . .— the other three cases are not shown

qed

Step 6: zooming and decomposition. We wish to attack each part of the
invariant (sep and disj ) independently, so we unfold definitions and decompose
the conjunction accordingly.

Step 7: invariant breakdown. We are now in a position to apply the
invariant breakdown proof pattern. We describe the application of the pat-
tern for disj , but the sep part is similar. Recall, from above, that we have
F1-inv(f ) as an assumption (and thus also disj f ). The aim of invariant break-
down is to speculate lemmas that expose the hypothesis in our conclusion. In
this case, we have the original state on the left hand side of the map union
operator, but not the right. This helps us to speculate a lemma: P → disj (f )
→ disj (f ∪m [d 7→ s]) where P represents unknown side-conditions. In the case
of disj , the important condition is (locs-of d s) ∩ (locs f )={}, which is exactly
the precondition for DISPOSE1. The (partial) proof script is:

show disj (f ∪m [d 7→ s])
proof (rule unionm-singleton-disj ) — The speculated lemma
show sep f using inv by assumption — Use of hypothesis
show (locs-of d s) ∩ (locs f ) ={} by (rule pre) — Precondition as side-condition
. . .— Additional side-conditions

qed

The use of invariant breakdown does not solve the invariant subgoals, but it
directs the proof engineer to the appropriate lemma structures to speculate.

Step 8: weakening and type bridging. Because of the repeated nature
of some formal methods POs, weakening lemmas speculated by invariant break-
down are often reusable. The lemma unionm-singleton-disj is used in each of
the other three cases introduced by hidden case analysis.

Lemma inference is quite hard in general, yet within the proof process pre-
sented, weakening and type bridging lemmas that will make proof progress are
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easier to identify. For example, in the proof for the other cases in the DISPOSE1
feasibility PO, because of the presence of inv(f ∪m g), we need a side-condition
that the map domains are disjoint (dom f ∩ dom g = { }). In context this is
given by the rather specific lemma:

lemma l-dispose1-munion-disjoint :
dom (( dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ) ∩
dom [min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )] = {}

This lemma is an instantiation of a side-condition that features in all subgoals
when breaking down the invariant for DISPOSE1, hence is the key enabler of
progress for the invariant breakdown of that feasibility proof.
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Chapter 6

Evaluation

Before one can get to the nub of the problem within industrial-scale proof obli-
gations, which almost always involve large formulae (i.e. tens of pages long)
and multiple (i.e. over 100) variables, we claim it is fundamental to have in
place a considerable amount of machinery to enable automation to an accept-
able level. Proof engineering is essential for scalability: it takes a good amount
of unrelated proof effort to enable one to tackle the actual proof obligations of
interest. Lemmas are useful whenever one needs to either: decompose a complex
problem; fine-tune the theorem prover’s rewriting abilities to given goals; gen-
eralise a solution of some related (usually more abstract) problem; and to pro-
vide alternative solutions/encodings of the same data structure/algorithm being
modelled; etc.

In our experiment we test our hypothesis by having the same proof task per-
formed independently by three different people with three different backgrounds
(i.e. formal methods proof expert, Isabelle proof expert, MSc student), in two
different provers (i.e. Isabelle/HOL and Z/EVES), and encoded in two different
methods (i.e. VDM and Z) on medium size refinement problem (i.e. the Heap).
The rationale for this experimental setup was to check a few points:

• how does proof expertise differ and why?

• how much can be handled by a novice industrial proof engineer (i.e. MSc
graduate)?

• what are common factors, and are there crucial patterns used by all par-
ties?

We did a rough-and-ready analysis the proof traces and scripts of the Isabelle
development (using Perl) looking for commonalities and differences. On the
expert proof engineer development, our new lemmas on VDM maps in Isabelle
were the ones with highest reuse rate (at 22%), with other available Isabelle
library lemmas reuse being quite high too (at 38%). On the Isabelle expert,
the ratio was slightly different at 16% and 65% respectively. The effort on PO-
specific weakening lemmas and type bridges was comparable at 23% and 17%
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for each expert. This indicates that a considerable amount of effort (around 20%
for both experts) was related to setting up VDM map operators and lemmas
in Isabelle, whereas around the same effort was needed on the actual POs.
Arguably, the VDM lemmas are reusable across problems, hence the patterns
described for the Heap problem do transfer across problems (in VDM at least).
The encoding in Z/EVES was relatively straightforward, as there were no issues
with undefinedness and the Z mathematical toolkit is quite similar to VDM’s.
This part of the experiment was useful, however, in early detection of possible
proof-difficulty in the model, which only appeared much latter in the Isabelle
development.

The MSc student Isabelle proofs [26] were also an interesting source for
our tools and methods. She had no experience with either VDM or Isabelle,
or indeed formal methods. Yet, after a few months of (mostly self-)training,
she managed to finish the feasibility proofs for NEW 0/1, and got stuck on
DISPOSE1, which is rather difficult. The interesting outcome was, having been
exposed to the proof patterns we described after Isabelle training, she also came
by similar lemmas from our VDM Isabelle library.

Proof effort. The complete proof effort, its description, theory files, proof
process meta-data, etc can be found in our AI4FM archive in http://www.

ai4fm.org/tr. In one of our (3) Isabelle developments, we defined (and used)
105 lemmas involving various operators, of which 51 were weakening lemmas.
The overall development had XXX goals and ZZZ proof steps. It involved three
versions of the same model, changed due to identified mistakes on the original
version [20], and some of our own versions. The (single) Z/EVES effort was
on a preliminary version of the model, and served to identify key relationships
between the various function symbols involved and identify necessary weakening
lemmas. These identified lemmas were useful for both Z/EVES and Isabelle
proofs.

Throughout this process, we use our AI4FM tools to capture the proof pro-
cess data for all three users doing proof in both Isabelle and Z/EVES. This trove
of meta-proof data is yet to be analysed and is quite large (e.g. over 250 GB). It
contains all proof attempts alongside model diff-histories per attempt. Our plan
is to investigate this data to identify how experts / novices react and recover
from (proof-)failure, as well as whether there are clusters of useful information
and proof intent. Eventually, we hope to use this data to have a statistically
(machine-learned) ground notion of proof patterns usefulness, instead of an em-
pirical one based on experience and suggestion.
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Chapter 7

Related work and
conclusions

This paper introduced the concept proof patterns in formal methods and de-
scribed several patterns of proof that commonly occur. We tested this hypoth-
esis by an experiment: the proof of a VDM heap memory manager [20] Just as
in software design patterns [14], proof patterns are informal and are described
generically, without reference to an individual problem. We also describe the
composition of a set of patterns in a worked example of a feasibility proof obli-
gation. We believe that a small collection of proof patterns is all that you need
to increase the automation of most formal methods proof obligations. This will
not eventually remove the burden of proof, yet we believe proof patterns offer
good support in de-skilling the process, as well as increasing proof effort reuse.

Before getting to the nub of the problem within industrial-scale proof obli-
gations, which almost always involve large formulae (i.e. tens of pages long)
and multiple (i.e. over 100) variables, we claim it is fundamental to have in
place a considerable amount of machinery to enable automation to an accept-
able level. Proof engineering is essential for scalability: it takes a good amount
of unrelated proof effort to enable one to tackle the actual proof obligations of
interest. Lemmas are useful whenever one needs to either: decompose a complex
problem; fine-tune the theorem prover’s rewriting abilities to given goals; gen-
eralise a solution of some related (usually more abstract) problem; and to pro-
vide alternative solutions/encodings of the same data structure/algorithm being
modelled; etc.

Related work. The term design pattern originated in architecture [2], but is
most widely known in software design [14]. Some languages, such as Java even
have built in support from patterns, such as the iterator pattern. In software
engineering, there is a wealth of research in design patterns, from architectural
patterns to specific patterns for user interfaces. In [8], Buschmann introduces
architectural patterns that are capable of describing large-scale software sys-
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tems, such as model-view controller, which separates the representation of data
(the model) and the user’s view of it. Architectural patterns are similar to our
methodological patterns, which we describe as a composition of proof patterns
to help solve a top-level proof obligation. We describe some closely related work
in formal proof, but Buschmann et al. has related work on design patterns [7].

While we do not know of any specific research on proof patterns in formal
methods, it has been noted in the mathematical community that pencil-and-
paper proofs often follow specific patterns, such as proof by contradiction, by
induction, etc. These ideas have found their way into the domain of automated
theorem proving. Bundy’s proof plans were an early attempt at capture pat-
terns of inductive proof [5]. Proof plans have been implemented many times,
most recently in Isaplanner [9]. We would like to investigate if the planning lan-
guage in Isaplanner is expressive enough to formalise some of our proof patterns.
In [21], we start this process by describing a language to capture meta-proof in-
formation. Also within AI4FM, colleagues have developed a graphical rewriting
language [15] that will hopefully be amenable to proof pattern recognition. As
well as the static proof patterns described here, it may be possible to learn
patterns from a corpus of proofs [17, 18].

Future work. In the heap example, we also used AI4FM tools (under-development)
to collect (> 250 GB) proof process data [27, 28], which we are currently
analysing to identify clusters using AI techniques akin to [16]. We hope with
this data to find hard evidence for proof patterns. The AI4FM hypothesis is
that “enough information-extraction can be automated from a mechanical proof
that future proofs of examples of the same class can have increased automation”.
The challenge is discussed in several earlier publications including [6, 21, 10].
As such, an important area of future work on proof patterns is the transference
of a proof, described using patterns, to help automate another similar proof
obligation. We are also interested in extending our catalogue of proof patterns,
as well as collecting further examples of the patterns for different formal meth-
ods. While we have given a natural language presentation of patterns in this
paper, we would like to formalise a pattern language in order to present and
automatically generate proofs from the patterns, similar to work in software
design patterns [3]. We will analyse the proof process data captured by our
tools using AI techniques.
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