
ar
X

iv
:1

31
1.

63
29

v2
 [

cs
.S

E
]

25
 F

eb
 2

01
4

Flexible Invariants Through Semantic Collaboration⋆

Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and Bertrand Meyer

Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Modular reasoning about class invariants is challenging inthe pres-
ence of collaborating objects that need to maintain global consistency. This pa-
per presentssemantic collaboration: a novel methodology to specify and reason
about class invariants of sequential object-oriented programs, which models de-
pendencies between collaborating objects by semantic means. Combined with a
simple ownership mechanism and useful default schemes, semantic collabora-
tion achieves the flexibility necessary to reason about complicated inter-object
dependencies but requires limited annotation burden when applied to standard
specification patterns. The methodology is implemented in AutoProof, our pro-
gram verifier for the Eiffel programming language (but it is applicable to any
language supporting some form of representation invariants). An evaluation on
several challenge problems proposed in the literature demonstrates that it can
handle a variety of idiomatic collaboration patterns, and is more widely applica-
ble than the existing invariant methodologies.

1 The Perks and Pitfalls of Invariants

Class invariants1 are here to stay [23]—even with their tricky semantics in thepresence
of callbacks and inter-object dependencies, which make reasoning so challenging [17].
The main reason behind their widespread adoption is that they formalize the notion of
consistentclass instance, which is inherent in object-orientated programming, and thus
naturally present when reasoning, even informally, about program behavior.

The distinguishing characteristic of invariant-based reasoning isstability: it should
be impossible for an operationm to violate the invariant of an objecto without modify-
ing o itself. Stability promotes information hiding and simplifies client reasoning about
preservation of consistency: without invariants a client would need to know which other
objectso’s consistency depends on, while with invariants it is sufficient that it checks
whetherm modifieso—a piece of information normally available as part ofm’s speci-
fication. The goal of aninvariant methodology(also calledprotocol) is thus to achieve
stability even in the presence of inter-object dependencies—where the consistency ofo
depends on the state of other objects, possibly recursivelyor in a circular fashion (see
Sect. 2 for concrete examples).

The numerous methodologies introduced over the last decade, which we review in
Sect. 3, successfully relieve several difficulties involved in reasoning with invariants; but

⋆ Work partially supported by SNF grants LSAT/200020-134974, ASII/200021-134976, and
FullContracts/200021-137931; and by Hasler-Stiftung grant #2327.

1 Also known under the names “object invariants” or “representation invariants”.

http://arxiv.org/abs/1311.6329v2

there is still room for improvement in terms of flexibility, usability, and automated tool
support. In this paper, we presentsemantic collaboration(SC): a novel methodology for
specifying and reasoning about invariants in the presence of inter-object dependencies
that combines flexibility and usability and is implemented in a program verifier.

A standard approach to inter-object invariants is based on the notion ofownership,
which has been deployed successfully in several invariant methodologies [2,11,16] and
is available in tools such as Spec# [3] and VCC [4]. Under thismodel, an invariant
of an objecto only depends on the state of the objects explicitly owned byo. Owner-
ship is congenial to object-orientation because it supports a strong notion of encapsu-
lation; however, not all inter-object relationships are hierarchical and hence reducible
to ownership. Multiple objects may alsocollaborateas equals, mindful of each other’s
consistency; a prototypical example is the Observer pattern [6] (see Sect. 2).

Semantic collaboration naturally complements ownership to accommodate invariant
patterns involving collaborating objects. Most existing methodologies support collab-
oration through dedicated specification constructs and syntactic restrictions on invari-
ants [11,1,15,22]; such disciplines tend to work only for certain classes of problems.
In contrast, SC relies on standard specification constructs—ghost state and invariants—
to keep track of inter-object dependencies, and imposessemanticconditions on class
invariant representations. Its approach builds upon the philosophy of locally-checked
invariants(LCI) [5]: a low-level verification method based on two-state invariants. LCI
has served as a basis for other specialized, user- and automation-friendly methodolo-
gies for ownership and shared-memory concurrency. SC can beviewed as an improved
specialization of LCI for object collaboration. To furtherimprove usability, SC com-
prises useful “defaults”, which characterize typical specification patterns. As we argue
in Sect. 5 based on several challenge problems, the defaultssignificantly reduce the
annotation burden without sacrificing flexibility in the general case.

We implemented SC as part of AutoProof, our automated verifier for the Eiffel
object-oriented programming language. The implementation provides more concrete
evidence of the advantages of SC compared to other methodologies to specify collabo-
rating objects (e.g., [1,12,22,15] all of which currently lack tool support).

Outline and contributions. The presentation is based on examples of non-hierar-
chical object structures, customarily used in the literature. Sect. 2 presents the examples
and the challenges they embody; and Sect. 3 discusses the approaches taken by main
existing invariant methodologies. Sect. 4 introduces SC, demonstrates its application to
the running examples, and outlines a soundness proof. Sect.5 evaluates both SC and
existing protocols on an extended set of examples, including challenge problems from
the SAVCBS workshop series [19]. The evaluation demonstrates that SC is the only
methodology that supports (a) collaboration with unknown classes, while preserving
stability, and (b) invariants depending on unbounded sets of objects, possibly unreach-
able in the heap. The collection of problems of Sect. 5—available at [20] together with
our solutions—could serve as a benchmark to evaluate invariant methodologies for non-
hierarchical object structures. The website [20] also gives access to AutoProof through
a web interface.

2

class SUBJECT

value: INTEGER
subscribers: LIST [OBSERVER]

make (v: INTEGER) -- Constructor

do

value := v

create subscribers

ensure

subscribers.is_empty
end

update (v: INTEGER)
do

value := v

across subscribers as o do o.notify end

ensure

value = v

end

feature { OBSERVER}
register (o: OBSERVER)
require

not subscribers.has (o)
do

subscribers.add (o)
ensure

subscribers.has (o)
end

end

class OBSERVER

subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor

do

subject := s

s.register (Current)
cache := s.value

ensure

subject = s

end

feature { SUBJECT}
notify

do

cache := subject.value
ensure

subject = old subject

cache = subject.value
end

invariant

subject.subscribers.has (Current)
cache = subject.value

end

Fig. 1: TheObserver pattern: an observer’sinvariant depends on the state of the
SUBJECT, which reports its state changes to all itssubscribers. The clients of the sub-
scribers must be able to rely on theircache always being consistent, while oblivious of
the update/notify mechanisms that preserve invariants.

2 Motivating Examples: Observers and Iterators

The Observerand Iterator design patterns are widely used programming idioms [6],
where multiple objects depend on one another and need to maintain a global invariant.
Their interaction schemes epitomize cases of inter-objectdependencies that ownership
cannot easily describe; therefore, we use them as illustrative examples throughout the
paper, following in the footsteps of much related work [12,17,15].

Observer pattern. Fig. 1 shows the essential parts of an implementation of the Ob-
server design pattern in Eiffel. An arbitrary number ofOBSERVER objects (called “sub-
scribers”) monitor the public state of a single instance of classSUBJECT. Each subscriber
maintains a copy of the subject’s relevant state (integer attribute value in Fig. 1) into
one of its local variables (attributecache in Fig. 1). The subscribers’ copies are cached
values that must be consistent with the state of the subject,formalized as the invari-
ant clausecache = subject.value of classOBSERVER, which depends on another object’s
state. This dependency is not adequately captured by ownership schemes, since no one
subscriber can have exclusive control over the subject.

In the Observer pattern, consistency is maintained by meansof explicit collabora-
tion: the subject has a list ofsubscribers, updated whenever a new subscriber regis-

3

ters itself by callingregister (Current)2 on the subject. Upon every change to its state
(methodupdate), the subject takes care of explicitly notifying all registered subscribers
(using anacross loop that callsnotify on everyo in subscribers). This explicit col-
laboration scheme—called “considerate programming” in [22]—ensures that the sub-
scribers’ state remains consistent (i.e., the class invariant holds) between calls to the
public methods of the object structure.

Fig. 1 uses Eiffel’sselective exports3 to separate the public interface of the classes
from the methods internal to the object structure:feature { OBSERVER} denotes that
methodregister is only available to instances of classOBSERVER, andfeature { SUBJECT}
similarly limits the visibility of notify to the subject. While selective exports help em-
phasize collaboration patterns, they are not necessary forthe discussion of the present
paper, whose results are applicable to any object-orientedlanguage regardless of the
available visibility specifiers.

A methodology to verify the Observer pattern must ensure invariant stability;
namely, that clients ofOBSERVER can rely on its invariant without knowledge of the reg-
ister/notify mechanism. Another challenge is dealing withthe fact that the number of
subscribers attached to the subject is not fixed a priori, andhence we cannot produce ex-
plicit syntactic enumerations of the subscribers’cache attributes. We must also be able
to verify update andnotify without relying on the class invariant as precondition—in
fact, those methods are called on inconsistent objects precisely to restore consistency.

In theIterator pattern, an arbitrary number of iterator objects traverse a collection
of elements. Fig. 2 sketches an implementation where theCOLLECTION uses anARRAY of
elements as underlying representation. TheITERATOR’s main capability is to return the
item at the current positionindex in thetarget collection4. item’s precondition (require)
specifies that this is possible only when the iterator pointsto a valid element oftarget,
that isindex is between1 andtarget.count (included); otherwise, ifindex is 0 the iter-
ator isbefore the list, and if it equalstarget.count + 1 it is after the list. The invariant
of classITERATOR defines the public state componentsbefore andafter in terms of the
internal state componentindex, as well as the acceptable variability range forindex.

Since the iterator’s invariant depends on the state of the target collection, modify-
ing the collection (for example, by callingremove_last) maydisablethe iterator (make
it inconsistent). This is aligned with the intended usage ofiterators, which should be
discarded after traversing a collection without changing it. A verification methodology
should ensure that clients ofITERATOR only access iterators in a consistent state, without
knowledge of the iterator’s internal stateindex or of its relation to thetarget collection.
In fact, the selective exports used in Fig. 2 hide the detailsof ITERATOR’s invariant from
its clients (the visibility of an invariant clause is determined by its least visible subex-
pression, andfeature {NONE} denotes purely private members). An additional obstacle
to verification comes from the fact that considerate programming would be at odds with
the ephemeral nature of iterators compared to observers: collections are normally im-

2
Current in Eiffel denotes the current object (this in Java and C#).

3 Similar to friend classes in C++.
4 We omit the description of other necessary operations, suchas advancing the iterator, since

they are irrelevant for our discussion about invariants.

4

class COLLECTION [G]

count: INTEGER

make (capacity: INTEGER) -- Constructor

require

capacity ≥ 0
do

create elements(1, capacity)
ensure

elements.count = capacity

count = 0
end

remove_last

require

count >0
do

count := count − 1
ensure

count = old count − 1
end

feature { ITERATOR}
elements: ARRAY [G]

invariant

0≤ count and count≤ elements.count
end

class ITERATOR [G]

target: COLLECTION [G]
before, after: BOOLEAN

make (t: COLLECTION) -- Constructor

do

target := t ; before := True

ensure

target = t

before and not after

end

item: G
require

not (before or after)
do

Result := target.elements [index]
end

feature { NONE}
index: INTEGER

invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count

end

Fig. 2: TheIterator pattern: an iterator’s invariant depends on the state of the collection
it traverses, which is oblivious of the iterators. Verification must prove that clients do
not access disabled iterators, without knowing collection’s and iterator’s internal states.

plemented unaware of the iterators operating on them; a flexible invariant methodology
should allow such implementations.

3 Existing Approaches

This section reviews the main existing methodologies for specifying and reasoning
about class invariants; based on their most important features and limitations. Sect. 4
will present our own methodology. For lack of space, we only discuss methodologies
for inter-object dependencies that support modular reasoning (where local checks on
individual classes or small groups of classes subsume global program correctness).

A crucial issue is decidingwhen(at which program points) class invariants should
hold: state-changing operations normally consist of sequences of elementary updates,
which individually may break the class invariant temporarily. To deal with this problem,
some methodologies restrict the program points where classinvariants are expected
to hold; others interpret the invariants in a weakened form,which holds vacuously at
intermediate steps during updates (and fully at crucial points).

Methodologies based onvisible-state semanticsonly require invariants to hold
when no operation is being executed on their objects, that isin states visible to clients.
This idea was introduced for Eiffel [13], and later also adopted by JML [8]. Without
additional mechanisms, visible-state semantics can’t achieve modularity in the pres-
ence of callbacks (the client making the callback is unawareof ongoing operations that

5

may affect the invariant) and of inter-object dependencies(if o1’s invariant depends
on o2, the former is also affected by operations ono2 invisible to clients ofo1). Ex-
isting solutions adopt aliasing control measures [16] to deal with hierarchical object
structures described by ownership. Other solutions [14,15,22], for collaborative invari-
ants, explicitly indicate which objects might be inconsistent at method call boundaries;
for example, methodregister (o: OBSERVER) of classSUBJECT in Fig. 1 would be anno-
tated withbroken o to specify that argumento’s invariant may not hold when executing
register. These two families of solutions—for hierarchical and for collaborative object
structures—based on visible-state semantics are not easily combined; this is a practi-
cal limitation, since many object-oriented systems consist of an interplay between both
types of structure. For example, continuing with Fig. 1, objects of classSUBJECT collabo-
rate withOBSERVER objects but also own asubscribers list as part of their representation.
Thus, when reasoning about methodregister, we should be able to deal with the call
subscribers.add (o) whose argumento is inconsistent (and henceadd cannot assumeo’s
invariant); however, annotatingLIST’s add by declaring its argumentbroken goes against
modularity, as classLIST should not need to know how and where it is used. The dif-
ficulty of integrating hierarchical and collaborative models is the main limitation of
visible-state methodologies, and likely a reason why, to our knowledge, they have not
been implemented in any program verifier.

Another family of methodologies, collectively known asBoogie methodologies
after the program verifier where they have originally been implemented, follow the
approach of weakening the default semantics of invariants so that they can be evalu-
ated only when appropriate. In a nutshell, all classes include a ghost Boolean attribute
closed,5 which denotes whether an object is in a consistent state; an invariantinv is then
interpreted as the weakerclosed⇒inv, which vacuously holds for open (i.e., not closed)
objects. Methods explicitly indicate whether they expect relevant objects to be closed
or open; this approach is more conducive to modularity than visible-state semantics: it
does not impose consistency by default at method call boundaries and thus does not
require methods to listall possibly inconsistent objects in the entire program.

The original Boogie methodologies, implemented in the Spec# system [3], are main-
ly based onsyntacticmechanisms to express ownership relations. For example, follow-
ing [2], we would annotate attributeelements of classCOLLECTION in Fig. 2 withrep, to
denote that it belongs toCOLLECTION’s internal representation; thus, modifyingelements
is only possible if theCOLLECTION object owning it has been opened—a situation where
closed⇒count≤ elements.count vacuously holds. This solution only supports represen-
tations based on bounded sets of objects known a priori and directly accessible through
attributes. Follow-up work [11] partially relaxes these restriction introducing a form
of quantification predicating over anowner ghost attribute (which goes up the owner-
ship hierarchy), and a mechanism to transfer ownership. Theadditional expressiveness
comes with a price to pay mainly in terms of complex invariantadmissibility conditions
(hence, it may be hard to understand what is expressible and how) and complicated
soundness proofs of the methodology.

In contrast, the VCC verifier [4] implements a Boogie methodology where owner-
ship is encoded on top of LCI’ssemanticapproach [5]. Objects include an additional

5 We follow VCC’s terminology [4] whenever applicable; otherworks may use different names.

6

ghost attribute,owns, storing the set of all owned objects; ghost code modifies this set
explicitly when the owner object is open. In the example of Fig. 2, instead of anno-
tating attributeelements with rep, we would introduce a first-order formula, such as
owns = { elements} , in the invariant ofCOLLECTION to express thatelements is part of the
representation. The advantage of this approach becomes apparent with linked struc-
tures where owned elements are accessible only by followingchains of references (e.g.,
a linked list owns all reachable cells). In fact, semantic approaches to ownership provide
the flexibility necessary to specify an unbounded number of owned objects, which may
even be not directly attached to the owner, as well as to implement ownership transfers
without need for ad hoc mechanisms. They also simplify the rules of reasoning; for ex-
ample, invariant admissibility becomes a simple proof obligation that all objects whose
state is mentioned in the invariant are bound, by the same invariant, to belong toowns.
These features have contributed to making VCC applicable toreal-world systems [10].

In addition to ownership, some Boogie methodologies also deal with collaborat-
ing objects. [11] introduces the notion ofvisibility-basedinvariants, which requires
that a class be aware of the types and invariants of all objects concerned with its
state6. For example, in Fig. 1SUBJECT must declare itsvalue attribute with a modi-
fier dependent OBSERVER. Whenever the subject changes itsvalue, it has to check that all
potentially affectedOBSERVERs are open. If aware of theOBSERVER’s invariant, it can show
that the only affected observers are{o: OBSERVER | o.subject = Current}. Such indi-
rect representations of the concerned objects complicate discharging the corresponding
proof obligations; and relying on knowing the concerned objects’ invariants introduces
tight coupling between the collaborating classes. To lift these complications, [1] sug-
gests instead to introduce a ghost attributedeps storing the set of all concerned objects.
It also introducesupdate guards, allowing a concerned object to state conditions under
which its invariant is preserved without revealing the invariant itself. Both approaches
[11,1] have shortcomings that derive from their reliance onsyntactic mechanisms and
conditions: collaboration invariants can only depend on a bounded number of objects
known a priori and accessible through attributes (called “pivot fields” in [1]); the types
of the concerned objects must be known explicitly; and the numerous ad hoc annotations
(e.g.,friend andkeeping) and operations (e.g., to modifydeps) make the methodolo-
gies harder to present and use. One of the main goals of our methodology (Sect. 4) is
to lift these shortcomings by dealing with collaborative invariants bysemanticrather
than syntactic means—similarly to what VCC did to the classic syntactic treatment of
ownership. The semantic approach makes SC very flexible, capable of accommodating
disparate object-oriented design patterns without requiring ad hoc mechanisms.

Somewhat orthogonally to other Boogie-family approaches,thehistory invariants
methodology [12] provides for more loose coupling between the collaborating classes,
but gives up stability of invariants.

6 We say that an objecto is concernedwith an attributea of another objects if updatings.a
might affecto’s invariant.

7

4 Semantic Collaboration

Our novel invariant methodology belongs to the Boogie family; as we illustrated in
Sect. 3, this entails that objects can beopenor closed, and class invariants have to hold
only for closed objects. On top of semantic mechanisms for ownership, similar to those
developed for VCC (see Sect. 3), our methodology also provides a semantic treatment
of dependencies among collaborating objects; hence its name semantic collaboration.
The keywords and constructs specific to SC areunderlined in the following.

Overview of semantic collaboration. To specify collaboration patterns, we equip
every objecto with ghost fieldssubjects and observers. As their names suggest,7

o.subjects stores the set of objects on whicho’s invariant might depend; ando.observers
stores the set of objects potentially concerned witho (analogous todeps in [1]). The
methodology achieves modularity by reducing global validity (all closed objects satisfy
their invariants) to local checks of two kinds: (i) all concerned objects are stored in
observers; and (ii) updates to the attributes of an objecto maintain the validity ofo and
its observers. Check (i) becomes an admissibility condition that every declared class
invariant must satisfy. Check (ii) holds vacuously for for open observers, thus one way
to satisfy it is to “notify” all observers of a potentially destructive update by opening
them. For more flexibility the methodology also allows subjects to skip “notifying” ob-
servers whenever the attribute update satisfies itsguard (a notion also inspired by [1]).
This option is supported by another admissibility condition: an invariant must remain
valid after updates to subjects that comply with their update guards.

4.1 Preliminaries and Definitions

As it is customary, the following presentation targets fundamental constructs, while
ignoring those that do not affect reasoning about invariants (e.g., control structures).
We also largely ignore issues related to inheritance, but webriefly come back to them
in Sect. 6.

A program is a collection of classes. A class is a collection of attributes, methods,
and logical functions (side-effect free and terminating).Any of those constructs can be
declaredghostif it is meant to be used only in specifications.

Built-in attributes. Every class is implicitly equipped with ghost attributes:closed

(to encode consistency);owns and owner (to encode the ownership hierarchy); and
subjects andobservers (to encode collaboration). We also define the shorthands:o.open
for ¬o.closed; o.free for o.owner.open; ando.wrapped for o.closed∧ o.free. Theowner-
ship domainof an objecto is {o} if o is open, and the transitive closure ofo.owns if o is
closed. Attributesclosed andowner are only changed indirectly through the implicitly
defined ghost methodswrap andunwrap, whose semantics is defined below.

Specifications. The specification of alogical functionconsists of adefinition(a
side-effect free expression defining the function value) and a read clause (an expres-
sion that denotes the set of objects on which the value of the function may depend).
The specification of amethodconsists of arequire clause (a precondition), anensure

7 While the names are inspired by the Observer pattern, they are also applicable to other collab-
oration patterns, as we demonstrate in Sect. 4.4. The formatting should avoid confusion.

8

clause (a postcondition), and amodify clause (an expression that denotes the set of ob-
jects that the method may modify). The specification of aclassincludes its invariant
inv. The specification of anattributea consists of anupdateguard (a Boolean expres-
sion overCurrent object, new attribute valuey, and generic observer objecto—written
guard(Current.a := y, o)).

Expressions. In addition to the standard programming-language expressions, we
support a restricted form of quantification through the syntaxall x∈ s : B(x) for univer-
sal andsome x∈ s : B(x) for existential quantification, wheres is a set expression andB(x)
is a Boolean expression overx. The special expressionVoid (analogous tonull in Java
and C#) denotes an object that is always allocated and open.

Theread setreads(e) of a primitive expressione is defined as follows: for an access
x.a to attributea, reads(x.a) = {x}; for a callx.f (y) to logical functionf, reads(x.f (y))
is given by thef’s read clause. The read set of a compound expressione is the union of
the read sets ofe’s subexpressions.

The currentheapH in which expressions are evaluated is normally clear from the
context and left implicit. Otherwise,eh denotes the value of expressione in heaph;
andh[x.f 7→ e] denotes the heap that agrees withh everywhere except possibly about
the value ofx.f, which ise. Since we ignore deallocation, our heaps have no dangling
references: only allocated objects are reachable from allocated objects.

Instructions. For the present discussion, we only have to consider method calls
x.m (y), as well asheap update instructions: create x (allocate an object and attach it to
x); x.a := y (update attributea); andx.wrap andx.unwrap (opening and closing an object).

The write setwrites(s) of an primitive instructions is defined as follows: for an
updatex.a := y of attributea, writes(x.a := y) = {x}; for opening or closing an object
x, writes(x.unwrap) = writes(x.wrap) = {x} ∪ x.owns; for a call x.r (y) to method (or
constructor)r, writes(x.r (y)) is the union of the ownership domains of all objects men-
tioned inr’s modify clause. The write set of a compound instructions is the union of
the write sets of the instructions ins.

4.2 Semantic Collaboration: Goals and Proof Obligations

Thegoal of any invariant methodology is to providemodularproof obligations to es-
tablishglobal validity: the property that every object in the program isvalid at every
program point. Following SC’s approach, an object is valid if satisfies its invariant when
closed; thus global validity is defined as:

∀o : o.closed ⇒ o.inv (G1)

Additionally, maintaining ownership-based invariants requires strengthening global
validity with the property that whenever a parent objectp is closed all its owned objects
are closed (and theirowner attributes point back top):

∀o, p : p.closed ∧ o ∈ p.owns ⇒ o.closed ∧ o.owner = p (G2)

Proof obligations. The proof obligations specific to SC consist of two types of
checks: (i) every class invariant isadmissibleaccording to Def. 1; and (ii) every heap

9

update instruction satisfies its precondition. These proofobligations aremodular in
that they only mention the state of the current object, its observers and owned objects.
Sect. 4.3 describes how establishing the local proof obligations entails global validity,
that is subsumes checking (G1) and (G2).

Admissibility captures the requirements that class invariants respect ownership and
collaboration relations, modeled through ghost attributesowns, subjects, andobservers.

Definition 1 An invariantinv is admissibleiff:

1. inv only depends onCurrent, its owned objects, and its subjects:

inv ⇒ reads(inv) ⊆
(

{Current} ∪ owns ∪ subjects
)

(A1)

2. All subjects ofCurrent are aware of it as an observer:

inv ⇒ ∀s : s ∈ subjects ⇒ Current ∈ s.observers (A2)

3. inv is preserved by any updates.a := y that conforms to its guard:

∀s, a, y : s ∈ subjects ∧ inv ∧ guard(s.a := y, Current) ⇒ invH[s.a 7→y] (A3)

4. (Syntactic check)inv does not mention attributesclosed andowner, directly or as
part of the definitions of the mentioned logical functions.

The specifications of the heap update instructions are givenbelow; the instructions
only modify objects and attributes mentioned in the postconditions.

Allocation creates an open object owned byVoid (and thus free), with no observers:
create x require ensure

True x.open ∧ x.owner = Void ∧ x.observers = {}
Unwrapping opens a wrapped object:

x.unwrap require ensure

x.wrapped x.open
Attribute update operates on an open object and preserves validity of its observers:

x.a := y require ensure

(a 6= closed) x.open x.a = y

all o ∈ x.observers : o.open ∨ guard(x.a := y, o)
Wrapping closes an open object, whose invariant holds, and gives it ownership over

all objects in itsowns set:
x.wrap require ensure

x.open ∧ x.inv x.wrapped
all o ∈ x.owns : o.wrapped all o ∈ x.owns : o.owner = x

Other proof obligations. The other proof obligations, which do not involve in-
variants, are the usual ones of axiomatic reasoning: every call to a methodm occurs in
a state that satisfiesm’s precondition; executing a methodm in a state that satisfies its
precondition leads to a state that satisfiesm’s postcondition; theread clause of every
logical functionf is consistent (i.e., the read set off’s definition is a subset off’s read

clause); themodify clause of every methodm is consistent (i.e., the write set ofm’s body
is a subset ofm’s modify clause); and the definitions of logical functions are terminating.

10

4.3 Soundness Argument

The soundness argument has to establish that every program that satisfies the proof
obligations of SC is always globally valid, that is satisfies(G1) and (G2). We outline a
proof of this fact in three parts.

The first part concerns ownership: every methodology that, like SC, imposes a suit-
able discipline of wrapping and unwrapping to manage ownership domains reduces
(G2) to local checks.

Lemma 1. Consider a methodologyM whose proof obligations verify the following:

a. freshly allocated objects areopen;
b. wheneverx.owner is updated orx.closed is set toFalse, objectx is free;
c. wheneverx.closed is updated toTrue, every objecto in x.owns is closed and satisfies

o.owner = x;
d. whenever an attributex.a (with a /∈ {closed, owner}) is updated, objectx is open.

Then every program that satisfiesM ’s proof obligations also satisfies(G2)everywhere.

Proof. The proof is by induction on the length of program traces.
The base case is the trace only consisting of the initial heapwhere no object is

allocated but for an open objectVoid; thus (G2) holds initially. For the inductive step,
let h be the final heap of a trace where (G2) invariably holds. Consider an instructions
that yields heaph′ if executed onh. Without loss of generality, leth′ 6= h; therefore,s
is either an allocation of a new object or an attribute update. If s allocates a new object
x, (G2) still holds inh′: x is open (rulea) and is in no other object’sowns set, sincex
has just been created. Ifs is an attribute update, it can only invalidate (G2) if it updates
closed, owns, or owner. If s updates someo.owner in (G2)’s consequent or setso.closed
to False, theno is free (rule b); thuso.owner is open, and hence (G2)’s antecedent is
false. Ifs sets toTrue somep.closed in (G2)’s antecedent, then rulec implies the whole
(G2) holds. Ifs updates somep.owns in (G2)’s antecedent, thenp is open (ruled); thus,
(G2)’s antecedent is false. ⊓⊔

The second part applies to any kind of inter-object invariants and assumes a method-
ology that, like SC, checks that attribute updates preservevalidity of all concerned
objects; we show that such checks subsume (G1). How a methodology identifies con-
cerned objects is left unspecified as yet.

Lemma 2. Consider a methodologyM whose proof obligations verify the following:

a. freshly allocated objects areopen;
b. wheneverx.closed is updated toTrue, x.inv holds;
c. whenever an attributex.a (with a 6= closed) is updated to somey, every concerned

object satisfies(o.closed ∧ o.inv) ⇒ o.invH[x.a7→y];
d. class invariants depend neither on attributeclosed nor on the allocation status of

objects.

Then every program that satisfiesM ’s proof obligations also satisfies(G1)everywhere.

11

Proof. The proof is by induction on the length of program traces.
The base case is the trace only consisting of the initial heapwhere no object is

allocated but for an open objectVoid; thus (G1) holds initially. For the inductive step,
let h be the final heap of a trace where (G1) invariably holds. Consider an instructions
that yields heaph′ if executed onh. Without loss of generality, leth′ 6= h; therefore,s
is either an allocation of a new object or an attribute update. If s allocates a new object
x, (G1) still holds inh′: x is open (rulea) and no other object’s invariants depends on
it, sincex has just been created and class invariant do not know about allocation status
(ruled). If s sets toFalse someo.closed in (G1)’s antecedent, then (G1) vacuously hold.
If s sets toTrue someo.closed in (G1)’s antecedent, theno.inv holds (ruleb); thus (G1)
holds too. Also, updates to someo.closed cannot concern the invariants of objects other
thano (rule d). If s updates somex.a, with a 6= closed, let o be any object concerned
with the update; eithero is open, or it is closed ando.inv holds inh by the induction
hypothesis, so rulec applies. Either way, (G1) holds inh′ for o. ⊓⊔

The third part of the soundness proof argues that SC satisfiesthe hypotheses of
Lem. 1 and 2, and hence ensures global validity.

Proposition 3. Every program that satisfies the proof obligations of SC alsosatisfies
(G2) and(G1) everywhere.

Proof. SC satisfies the hypotheses of Lem. 1: allocation satisfies rule a; unwrapping
satisfies ruleb and wrapping satisfies rulesb andc (we assume thatwrap first updates
theowner attribute of every object in theowns set of its argument, and then updates the
closed attribute of its argument); remember thatclosed andowner are only changed by
wrap and unwrap. Attribute update satisfies ruled.

It also satisfies the hypotheses of Lem. 2: allocation satisfies rulea; wrapping sat-
isfies ruleb; invariant admissibility and the rules of language syntax satisfy rule d.
Rulec requires more details. First note that invariant admissibility requires that no in-
variant mentionowner; thus no object is concerned with wrapping (the only operation
that can changeowner), which therefore vacuously satisfies rulec. Now, consider an
updatex.a := y with a 6= owner anda 6= closed, and leto be any concerned object. As-
sumingo.closed ando.inv hold for a generic heaph, we have to show thato.inv also
holds of the heaph′ = h[x.a 7→ y]. By definition of read set,x ∈ reads(o.inv); o.inv
is also admissible and hence it satisfies (A1); thereforex ∈ {o} ∪ o.owns ∪ o.subjects.
However, the first precondition of the attribute update rulesays thatx is open; thus
x 6= o becauseo is closed. We already proved thath satisfies (G2); forp = o this entails
that all objects ino.owns are closed; therefore,x 6∈ o.owns as well. We conclude that
x ∈ o.subjects which, combined with condition (A2) foro.inv’s admissibility, implies
thato ∈ x.observers holds inh. Finally, the second precondition of the attribute update
rule establishesguard(x.a := y, o), and thus by admissibility condition (A3),o.inv still
holds in in the heaph′. ⊓⊔

As a closing remark, we note that another way to show soundness of SC is via
reduction to LCI. To encode collaboration in LCI on top of theownership encoding
detailed in [5], we add the following clauses to the invariant of each class: one stating
that allsubjects know Current for an observer (the consequent of (A2)), and for each

12

attribute ofCurrent, another one stating that allobservers approve of the changes to this
attribute.

4.4 Examples

We illustrate SC on the two examples of Sect. 2: Fig. 3 and 4 show the Observer and
Iterator patterns fully annotated according to the rules ofSect. 4.2. We use the short-
handswrap_all (s) andunwrap_all (s) to denote calls towrap andunwrap on all objects
in a sets. As we discuss in Sect. 5, several annotations of Fig. 3 and 4 are subsumed
by the defaults mentioned in Sect. 4.5. We postpone to Sect. 4.6 dealing with update
guards and the corresponding admissibility condition (A3).

Observer pattern. The OBSERVER’s invariant is admissible (Def. 1) because it en-
sures thatsubject is in subjects (A1) and thatCurrent is in thesubject’s observers

(A2). Constructors normally wrap freshly allocated objects after setting up their state.
Public methodupdate must be called when the whole object structure is wrapped and
makes sure that it is wrapped again when the method terminates. This specification
style is convenient for public methods, as it allows clientsto interact with the class
while maintaining objects in a consistent state, without having to explicitly discharge
any condition. Methods such asregister andnotify, with restricted visibility, work
instead with open objects and restore their invariants so that they can be wrapped upon
return. Sincenotify explicitly ensuresinv, update does not need the precise definition
of the observer’s invariant in order to wrap it (it only needsto know enough to establish
the precondition ofnotify). Thus the same style of specification would work ifOBSERVER

were an abstract class and its subclasses maintained different views of subject’svalue.
Let us illustrate the intuitive reason why an instance ofSUBJECT cannot invalidate

any object observing its state. On the one hand, by the attribute update rule, any change
to a subject’s state (such as assignment tovalue in update) must be reconciled with its
observers. On the other hand, any closed concernedOBSERVER object must be contained
in its subject’s observers set: a subject cannot surreptitiously remove anything from
this set, since such a change would require an attribute update, and thus, again, would
have to be reconciled with all current members ofobservers.

Note that we had to restate the first invariant clause ofOBSERVER from Fig. 1 in terms
of observers instead ofsubscribers. In general, collaboration invariants have to be ex-
pressed directly in terms of attributes of subjects and cannot refer to their ownership
domains (including through logical functions). This is nota syntactic restriction but fol-
lows from the fact that it is rarely possible to establish a subject/observer relation with
the whole domain (in this example, we would have to requireLIST to allowOBSERVER ob-
jects in itsobservers set). This limitation can always be easily circumvented, however,
by introducing a ghost attribute in the subject that mirrorsthe requires state.

Iterator pattern. The main differences in the annotations of the Iterator pattern
occur in theCOLLECTION class whose non-ghost state is, unlikeSUBJECT above, unaware of
its observers. Methodremove_last has to unwrap itsobservers according to the update
rule. However, it has no way of restoring their invariants (in fact, a collection is in
general unaware even of thetypesof the iterators operating on it). Therefore, it can
only leave them in an inconsistent state and remove them fromtheobservers set. Public

13

class SUBJECT

value: INTEGER
subscribers: LIST [OBSERVER]

make (v: INTEGER) -- Constructor

require open

modify Current

do

value := v

create subscribers

owns := { subscribers }
wrap

ensure

subscribers.is_empty
wrapped

end

update (v: INTEGER)
require

wrapped

all o ∈ observers : o.wrapped
modify Current, observers
do

unwrap ; unwrap_all (observers)
value := v

across subscribers as o do o.notify end

wrap_all (observers) ; wrap
ensure

value = v

wrapped

all o ∈ observers : o.wrapped
observers = old observers

end

feature { OBSERVER}
register (o: OBSERVER)
require

not subscribers.has (o)
wrapped

o.open
modify Current

do

unwrap

subscribers.add (o)
observers := observers + { o }
wrap

ensure

subscribers.has (o)
wrapped

end

invariant

observers = subscribers.range
owns = { subscribers }
subjects = {}

end

class OBSERVER

subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor

require

open

s.wrapped
modify Current, s
do

subject := s

s.register (Current)
cache := s.value
subjects := { s }
wrap

ensure

subject = s

wrapped

s.wrapped
end

feature { SUBJECT}
notify

require

open

subjects = { subject}
subject.observers.has (Current)
observers = {}
onws = {}

modify Current

do

cache := subject.value
ensure

inv

end

invariant

cache = subject.value
subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

end

Fig. 3: TheObserver patternusing SC annotations (underlined).

methods ofITERATOR, such asitem, normally operate on wrapped objects, and hence
in general cannot be called after some operations on the collection has disabled its
iterators. The only way out of this is if the client of collection and iterators can prove
that a certain iterator objecti_x was not in the modified collection’sobservers; this is
possible if, for example, the client directly createdi_x. The fact that now clients are

14

class COLLECTION [G]

count: INTEGER

make (capacity: INTEGER) -- Constructor

require

open

capacity ≥ 0
modify Current

do

create elements(1, capacity)
owns := { elements } ; wrap

ensure

elements.count = capacity

count = 0
observers = {}

end

remove_last

require

count >0
wrapped

all o ∈ observers : o.wrapped
modify Current, observers
do

unwrap ; unwrap_all (observers)
observers := {}
count := count − 1
wrap

ensure

count = old count − 1
wrapped

observers = {}
all o ∈ old observers : o.open

end

feature { ITERATOR}
elements: ARRAY [G]

invariant

0≤ count and count≤ elements.count
owns = { elements }
subjects = {}

end

class ITERATOR [G]

target: COLLECTION [G]
before, after: BOOLEAN

make (t: COLLECTION) -- Constructor

require

open and t.wrapped
modify Current, t
do

target := t

before := True

t.unwrap
t.observers := t.observers + { Current }
t.wrap
subjects := { t }
wrap

ensure

target = t

before and not after

wrapped

end

item: G
require

not (before or after)
wrapped and t.wrapped

do

Result := target.elements [index]
end

feature { NONE}
index: INTEGER

invariant

0≤ index and index≤ target.count + 1
before = index <1
after = index >target.count
subjects = { target }
target.observers.has (Current)
observers = {} and owns = {}

end

Fig. 4: TheIterator patternusing SC annotations (underlined).

directly responsible for keeping track of theobservers set is germane to the iterator
domain: iterators are meant to be used locally by clients.

4.5 Default Annotations

The annotation patterns shown in Sect. 4.4 occur frequentlyin object-oriented pro-
grams. To reduce the annotation burden in those cases, we suggest the following de-
faults.

Pre- and postconditions: public procedures (methods not returning values) require
and ensure thatCurrent, its observers, and method arguments bewrapped.

Modify clauses: procedures modifyCurrent; functions (methods returning values)
modify nothing.

15

Invariants: Built-in ghost set attributes (such asowns) are invariably empty if they are
not mentioned in the programmer-written invariant.

Wrapping: public procedures start by unwrappingCurrent and terminate after wrap-
ping it back.

Built-in set manipulation: if a built-in ghost set attributes is only mentioned in an in-
variant clause of the forms = expr, thens is consideredimplicit; correspondingly,
everywrap of objects enclosings will implicitly perform an assignments:= expr.8

These defaults encourage considerate programming: unlessexplicitly specified oth-
erwise, an object is always required to restore the consistency of its observers at the end
of a public method. This is a useful property, since the considerate paradigm promotes
encapsulation and is convenient for the clients. Nevertheless, the defaults are only op-
tional suggestions that can be overridden by providing explicit annotations; this ensures
that they do not tarnish the flexibility and semantic nature of our methodology.

4.6 Update guards

Update guards are used to distribute the burden of reasoningabout attribute updates be-
tween subjects and observers, depending on the intended collaboration scheme. At one
extreme, if aguard(x.a := y, o) is identicallyFalse, the burden is entirely on the subject,
which must check that all observers are open whenevera is updated; in contrast, the
admissibility condition (A3) holds vacuously for the observer o. At the other extreme,
if a guard is identicallyTrue, the burden is entirely on the observer, which deals with
(A3) as a proof obligation that its invariant does not dependona; in contrast, the subject
x can updatea without particular constraints.

Another recurring choice for a guard isinv(o) ⇒ inv(o)H[x.a7→y]. For its flexibility,
we chose this as the default guard of SC. Just likeFalse, this guard also does not burden
the observer, but is more flexible at the other end: upon updating, the subject can estab-
lish that each observer is either open or its invariant is preserved. The subject can rely
on the latter condition if the observer’s invariants are known, and ignore it otherwise.

When it comes to built-in ghost attributes,owns andsubjects are guarded withTrue,
since other objects are not supposed to depend on them, whileobservers has a more
interesting guard, namelyguard(x.observers := y, o) = o ∈ y. This guard reflects the
way this attribute is commonly used in collaboration invariants, while leaving the sub-
ject with reasonable freedom to manipulate it; for example,adding new observers to
the setobservers without “notifying” the existing ones (this is used, in particular, in the
register method of Fig. 3).

5 Experimental Evaluation

We arranged a collection of representative challenge problems involving inter-object
collaboration, and we specified and verified them using our SCmethodology. This sec-
tion presents the challenge problems (Sect. 5.1), and discusses their solutions using
SC (Sect. 5.2), as well as other methodologies, in particular those described in Sect. 3

8 This is inspired by the default “static” treatment ofowns sets in VCC.

16

(Sect. 5.3). See [20] for full versions of problem descriptions, together with our solu-
tions, and a web interface to the AutoProof verifier.

5.1 Challenge Problems

Beside using it directly to evaluate SC, the collection of challenge problems described
in this section can be a benchmark for other invariant methodologies. The benchmark
consists of six examples of varying degree of difficulty, which capture the essence of
various collaboration patterns often found in object-oriented software. The emphasis is
on non-hierarchical structures that maintain a global invariant.

We briefly present the six problems in roughly increasing order of difficulty in terms
of the shape of references in the heap, state update patterns, and challenges posed to
preserving encapsulation.

subject

observer

observer

Observer [12,17,15] (see also SAVCBS ’07 [19], and Sect. 2).
The invariants of the observer objects depend on the state ofthe
subject. Verification must ensure that the subject reports all its state
changes to all observers, so that their clients can always rely on
a globally consistent state. Asadditional challenge: combination
with ownership (the subject keeps references to its observers in a

collection, which is a part of its representation).
Variants: a simplified version where the number of observers is fixed (thus col-

lections of observers are not needed); a more complex version with multiple observer
classes related by inheritance, each class redefining classinvariant and implementation
of thenotify method.

collection

iterator

iterator

Iterator [12] (see also SAVCBS ’06 [19], and Sect. 2). Unlike
observers in the Observer pattern, the implementation of a collec-
tion is not aware of the iterators operating on it. Specification must
still be able to refer to the iterators attached to the collection while
avoiding global reasoning. Asadditional challenge: we cannot rely
on the implementation following considerate programming (where

objects must be in consistent states at public call boundaries).
Variants: a more complex version where iterators may modify the collection.

master

slave

slave

Master clock [1,12]. The time stored by a master clock can in-
crease (public methodtick) or be set to zero (public methodreset).
The time stored locally by each slave clock must never exceedthe
master’s but need not be perfectly synchronized. Therefore, when
the master isreset its slaves are disabled until they synchronize
(similar to iterators); when the master increments the timeits slaves

remain in a consistent state without requiring synchronization. Additional challenges:
tick’s frame does not include slaves; perform reasoning local tothe master with only
partial knowledge of the slaves’ invariants.

Variants: a simplified version withoutreset (slaves cannot become inconsistent).

node rightleft

Doubly-linked list [11,14]. The specification expresses the
consistency of theleft andright neighbors directly attached to
eachnode. Verification establishes that updates local to a node

17

Table 5: The challenge problems specified and verified using SC.

SIZE TOKENS (no defaults) TOKENS (with defaults)TIME

PROBLEM (LOC) CODE REQ AUX SPEC/CODE AUX SPEC/CODE (sec.)
Observer 129 156 52 296 2.2 185 1.5 8
Iterator 177 168 176 315 2.9 247 2.5 12
Master clock 130 85 69 267 4.0 190 3.1 6
DLL 147 136 83 435 3.8 320 3.0 18
Composite 188 124 270 543 6.6 427 5.6 18
PIP 152 116 310 445 6.5 402 6.1 18
Total 923 785 960 2301 4.2 1771 3.5 80

(such as inserting or removing a node next to it) preserve con-
sistency. Unlike in the previous examples, the heap structure is recursive; the main chal-
lenge is thus avoiding considering the list as a whole (such as to propagate the effects
of local changes).

Composite [23,22,9], (see also SAVCBS ’08 [19]). A
tree structure maintains consistency between the values
stored by parent and children nodes (for example, the value
of every node is the maximum of its children’s). Clients can
add children anywhere in the tree; therefore, ownership is

unsuitable to model this example. Two new challenges are that the node invariant de-
pends on an unbounded number of children; and that the effects of updates local to a
node (such as adding a child) may propagate up the whole tree involving an unbounded
number of nodes. Specification deals with these unbounded-size footprints; and verifi-
cation must also ensure that the propagation to restore global consistency terminates.
Clients of a tree can rely on a globally consistent state while ignoring the tree structure.

Variations: a simplified version withn-ary trees for fixedn (the number of children
is bounded); more complex versions where one can also removenodes or add whole-
subtrees.

PIP [23,22]. The Priority Inheritance Protocol [21] de-
scribes a compound whose nodes are more loosely related
than in the Composite pattern: each node has a reference to
at most one parent node, and cycles are possible. Unlike in
the Composite pattern, the invariant of a node depends on

the state of objects not directly accessible in the heap (parents do not have references
to their children). New challenges derive from the possiblepresence of cycles, and the
need to add children that might already be connected to wholegraphs; specifying foot-
prints and reasoning about termination of update operations are trickier.

5.2 Results and Discussion

We specified the six challenge problems using SC, and verifiedthe annotated Eiffel
programs with AutoProof. Tab. 5 shows various metrics aboutour solutions: theSIZE

of each annotated program; the number ofTOKENSof executableCODE, REQuirements

18

Table 6: Comparison of invariant protocols on the challengeproblems.
VISIBLE -STATE SEMANTICS BOOGIE METHODOLOGIES

Cooperation [15]Considerate [22]Spec# [11]Friends [1]History [12] SC
Observer ⊕ + + ⊕ ⊕d ⊕

Iterator −a −a
+ + ⊕d ⊕

Master clock −a −a
+ ⊕ ⊕d ⊕

DLL + + ⊕ + +
d ⊕

Composite −b ⊕c −b −b −b ⊕

PIP −b ⊕c −b −b −b ⊕

a Only considerate programming b Only bounded set of reachable subjects
c No framing specification d No invariant stability

specification (the given functional specification to be verified), andAUX iliary anno-
tations (specific to our methodology, both with and without default annotations); the
SPEC/CODE overhead, i.e.,(REQ + AUX)/CODE; and the verification time in Auto-
Proof. The overhead is roughly between 1.5 (for Observer) and 6 (for PIP), which is
comparable with that of other verification methodologies applied to similar problems.
The default annotations of Sect. 4.5 reduce the overhead by afactor of 1.3 on average.

The PIP example is perfectly possible using ghost code, contrary to what is claimed
elsewhere [23]. In our solution, every node includes a ghostsetchildren with all the
child nodes (inaccessible in the non-ghost heap); it is defined by the invariant clause
parent 6= Void⇒parent.children.has (Current), which ensures thatchildren contains ev-
ery closed noden such thatn.parent = Current. Based on this, the fundamental con-
sistency property is that thevalue of each node is the maximum of the values of nodes
in children (or a default value for nodes without children), assuming maximum is the
required relation between parents and children.

The main challenge in Composite and PIP is reasoning about framing and termi-
nation of the state updates that propagate along the graph structure. For framing spec-
ifications, we use a ghost setancestors with all the nodes reachable followingparent
references. Proving termination in PIP requires keeping track of all visited nodes and
showing that the set of ancestors that haven’t yet been visited is strictly shrinking.

5.3 Comparison with Existing Approaches

We outline a comparison with existing approaches (focusingon those discussed in
Sect. 3) on our six challenge problems. Tab. 6 reports how each methodology fares
on each challenge problem:− for “methodology not applicable”,+ for “applicable”,
and⊕ for “applicable and used to demonstrate the methodology when introduced”.

Only SC is applicable to all the challenges, and other methodologies often have
other limitations (notes in Tab. 6). Most approaches cannotdeal with unbounded sets of
subjects, and hence are inapplicable to Composite and PIP. The methodology of [22] is
an exception as it allows set comprehensions in invariants;however, it lacks an im-
plementation and does not discuss framing, which constitutes a major challenge in
Composite and PIP. Both methodologies [15,22] based on visible-state semantics are
inapplicable to implementations which do not follow considerate programming; they

19

also lack support for hierarchical object dependencies, and thus cannot verify imple-
mentations that rely on library data structures (e.g., Fig.1 and 2).

Another important point of comparison is the level of coupling between collabo-
rating classes, which we can illustrate using the Master clock example. In [11], class
MASTER requires complete knowledge of the invariant of classCLOCK, which breaks in-
formation hiding (in particular,MASTER has to be re-verified when the invariant ofCLOCK

changes). The update guards of [1] can be used to declare thatslaves need not be no-
tified as long their master’s time is increased; this provides abstraction over the slave
clock’s invariant, but classMASTER still depends on classCLOCK—where the update guard
is defined. In general, the syntactic rules of [1] require that subject classes declare all po-
tential observer classes as “friends”. In SC, update guardsare defined in subject classes;
thus we can prove thattick maintains the invariants of all observers without knowing
their type. Among the other approaches, only history invariants [12] support the same
level of decoupling, but they cannot preserve stability with thereset method.

Reasoning without invariants. Other, more fundamental verification methodolo-
gies not based on invariants, such as dynamic frames [7] and separation logic [18], can
fully handle all the six benchmark problems. The generalitythey achieve is, however,
not without costs, as one loses stability of consistency properties (e.g.,SUBJECT is not
required to notify all its observers). Using recursive predicates instead of invariants to
define global consistency also loses locality of specifications: for example, updates lo-
cal to a node in a doubly-linked list require to reason about the whole list; and one
node that becomes inconsistent during global updates in theComposite example makes
the whole structure inconsistent (instead of just the parent). Recursive predicates over
cyclic structures such as PIP also introduce non-trivial proof obligations to check they
are well-founded.

SAVCBS workshops solutions.SC also fares favorably compared against the so-
lutions submitted to the SAVCBS workshops [19] challenges (Iterator, Observer, and
Composite). Considering only solutions for general-purpose languages and targeting
complete requirement specifications, there are two solutions to the Iterator problem and
two to the Composite problem. One solution to the Iterator uses JML and ESC/Java2;
the collaborating parts of the invariants are, however, described by pre- and postcondi-
tions. One solution to the Composite also uses JML; it is hardto compare it to other
solutions as it is based on model programs and proves invariant preservation only for
methods that refine the model program used as specification. One solution to the Com-
posite uses separation logic and VeriFast; the specification overhead for clients is higher
than in our solution but there is no ghost state in the nodes (which has to be updated
during global modifications), thus it has advantages and disadvantages compared to our
solution.

6 Conclusions and Future Work

We presentedsemantic collaboration: a novel methodology for specifying and verify-
ing invariants of arbitrary object structures. Compared toexisting invariant protocols, it
offers considerable flexibility and conceptual simplicity, as it introduces no ad hoc syn-
tax and does not syntactically restrict the form of invariants. We implemented semantic

20

collaboration as part of the AutoProof Eiffel program verifier. Our experiments with six
challenge problems demonstrate the wide applicability of the methodology.

In an ongoing effort, we have been using SC to verify a realistic data structure
library. This poses new challenges to the verification methodology; in particular dealing
with inheritance. Rather than imposing severe restrictions on how invariants can be
strengthened in subclasses, we prefer to re-verify most inherited methods to make sure
they still properly re-establish the invariant before wrapping theCurrent object. We
maintain that this approach achieves a reasonable trade-off.

When it comes to reasoning about invariants, sequential andconcurrent programs
each have their distinctive challenges. In a sequential setting, one typically performs
state updates in series of steps that temporarily break object consistency; this is accept-
able since intermediate states are not visible to other objects. A sequential invariant pro-
tocol must adequately support such update schemes, while making sure that invariants
hold at “crucial” points. Concurrent invariant protocols deal with different schemes, and
hence have different goals. For this reason, we do not recommend extending SC to deal
with concurrent programs; rather, it could becombinedwith an invariant protocol for
concurrent programs, as done in VCC [4].

References

1. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over shared
state. In: MPC. pp. 54–84 (2004)

2. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3 (2004)

3. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011)

4. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: TPHOLs. LNCS, vol.
5674, pp. 23–42. Springer (2009)

5. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invariants in
concurrent programs. In: CAV. pp. 480–494 (2010)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley (1994)
7. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing without re-

strictions. In: FM. pp. 268–283 (2006)
8. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Behavioral

Specifications of Businesses and Systems, pp. 175–188 (1999)
9. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-

quential object-oriented programs. Formal Asp. Comput. 19(2), 159–189 (2007)
10. Leinenbach, D., Santen, T.: Verifying the Microsoft Hyper-V Hypervisor with VCC. In: FM.

LNCS, vol. 5850, pp. 806–809 (2009)
11. Leino, K.R.M., Müller, P.: Object invariants in dynamiccontexts. In: ECOOP. pp. 491–516

(2004)
12. Leino, K.R.M., Schulte, W.: Using history invariants toverify observers. In: ESOP. pp. 80–94

(2007)
13. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, 2nd edn. (1997)
14. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Cooperation-based invariants for OO

languages. Electr. Notes Theor. Comput. Sci. 160, 225–237 (2006)

21

15. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Invariants for non-hierarchical object
structures. Electr. Notes Theor. Comput. Sci. 195, 211–229(2008)

16. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-
tures. Sci. Comput. Program. 62(3), 253–286 (2006)

17. Parkinson, M.J.: Class invariants: the end of the road? In: IWACO. ACM (2007)
18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS. pp.

55–74 (2002)
19. SAVCBS workshop series.http://www.eecs.ucf.edu/~leavens/SAVCBS/ (2001–2010)
20. Semantic Collaboration website.http://se.inf.ethz.ch/people/polikarpova/sc/

21. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-
time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)

22. Summers, A.J., Drossopoulou, S.: Considerate reasoning and the composite design pattern.
In: VMCAI. pp. 328–344 (2010)

23. Summers, A.J., Drossopoulou, S., Müller, P.: The need for flexible object invariants. In:
IWACO. pp. 1–9. ACM (2009)

22

http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://se.inf.ethz.ch/people/polikarpova/sc/

	Flexible Invariants Through Semantic Collaboration

