Skip to main content

Polynomial Multivariate Approximation with Genetic Algorithms

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8436))

Included in the following conference series:

  • 2704 Accesses

Abstract

We discuss an algorithm which allows us to find the algebraic expression of a dependent variable as a function of an arbitrary number of independent ones where data is arbitrary, i.e. it may have arisen from experimental data. The possibility of such approximation is proved starting from the Universal Approximation Theorem (UAT). As opposed to the neural network (NN) approach to which it is frequently associated, the relationship between the independent variables is explicit, thus resolving the “black box” characteristics of NNs. It implies the use of a nonlinear function (called the activation function) such as the logistic 1/(1+e− x). Thus, any function is expressible as a combination of a set of logistics. We show that a close polynomial approximation of logistic is possible by using only a constant and monomials of odd degree. Hence, an upper bound (D) on the degree of the polynomial may be found. Furthermore, we may calculate the form of the model resulting from D. We discuss how to determine the best such set by using a genetic algorithm leading to the best L∞- L2 approximation. It allows us to find the best approximation polynomial given a selected fixed number of coefficients. It then finds the best combination of coefficients and their values. We present some experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D., McClelland, J., the PDP research group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1. MIT Press (1986)

    Google Scholar 

  2. Haykin, S.: Neural Networks and Learning Machines. In: Multilayer Perceptrons, ch. 4, 3rd edn., Prentice Hall (2009) ISBN-13: 978-0-13-147139-9

    Google Scholar 

  3. Powell, M.J.D.: The theory of radial basis functions. In: Light, W. (ed.) Advances in Numerical Analysis II: Wavelets, Subdivision, and Radial Basis Functions. King Fahd University of Petroleum & Minerals (1992)

    Google Scholar 

  4. Haykin, S.: op. cit, ch. 5. Kernel Methods and Radial Basis Functions (2009)

    Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20 (1995), http://www.springerlink.com/content/k238jx04hm87j80g/

  6. Haykin, S.: op. cit, ch. 6. Support Vector Machines (2009)

    Google Scholar 

  7. MacKay, D.: Information Theory, Inference, and Learning Algorithms, Cambridge (2004) ISBN 0-521-64298-1

    Google Scholar 

  8. Ratkowsky, D.: Handbook of Nonlinear Regression Models. Marcel Dekker, Inc., New York (1990); Library of Congress QA278.2.R369

    Google Scholar 

  9. Beckermann, B.: The condition number of real Vandermonde, Krylov and positive definite Hankel matrices. Numerische Mathematik 85(4), 553–577 (2000), doi:10.1007/PL00005392

    Google Scholar 

  10. Meyer, C.: Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, SIAM (2001) ISBN 978-0-89871-454-8

    Google Scholar 

  11. Kuri-Morales, A.: Training Neural Networks using Non-Standard Norms- Preliminary Results. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS (LNAI), vol. 1793, pp. 350–364. Springer, Heidelberg (2000)

    Google Scholar 

  12. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2, 303–314 (1989)

    Google Scholar 

  13. Bishop, E.: A generalization of the Stone–Weierstrass theorem. Pacific Journal of Mathematics 11(3), 777–783 (1961)

    Google Scholar 

  14. Koornwinder, T., Wong, R., Koekoek, R., Swarttouw, R.: Orthogonal Polynomials. In: Olver, F., Lozier, D., Boisvert, R., et al. (eds.) NIST Handbook of Mathematical Functions. Cambridge University Press (2010) ISBN 978-0521192255

    Google Scholar 

  15. Scheid, F.: Numerical Analysis. In: Least Squares Polynomial Approximation, ch. 21. Schaum’s Outline Series (1968) ISBN 07-055197-9

    Google Scholar 

  16. Kuri-Morales, A., Aldana-Bobadilla, E.: The Best Genetic Algorithm Part I. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 1–15. Springer, Heidelberg (2013)

    Google Scholar 

  17. Kuri-Morales, A.F., Aldana-Bobadilla, E., López-Peña, I.: The Best Genetic Algorithm Part II. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 16–29. Springer, Heidelberg (2013)

    Google Scholar 

  18. Cheney, E.W.: Introduction to Approximation Theory, pp. 34–45. McGraw-Hill Book Company (1966)

    Google Scholar 

  19. Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2013), http://archive.ics.uci.edu/ml

  20. http://www.math.nus.edu.sg/~matngtb/Calculus/MA3110/Chapter10WeierstrassApproximation.pdf

  21. Masry, E.: Multivariate Local Polynomial Regression For Time Series: Uniform Strong Consistency And Rates. J. Time Series Analysis 17, 571–599 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kuri-Morales, A., Cartas-Ayala, A. (2014). Polynomial Multivariate Approximation with Genetic Algorithms. In: Sokolova, M., van Beek, P. (eds) Advances in Artificial Intelligence. Canadian AI 2014. Lecture Notes in Computer Science(), vol 8436. Springer, Cham. https://doi.org/10.1007/978-3-319-06483-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06483-3_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06482-6

  • Online ISBN: 978-3-319-06483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics