Skip to main content

Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Problems

  • Chapter
  • First Online:

Abstract

Finite element methods are one of the most prominent discretisation techniques for the solution of partial differential equations. They provide high geometric flexibility, accuracy and robustness, and a rich body of theory exists. In this chapter, we summarise the main principles of Galerkin finite element methods, and identify and discuss avenues for their parallelisation. We develop guidelines that lead to efficient implementations, however, we prefer generic ideas and principles over utmost performance tuning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: SC ’09: Proceedings of the 2009 ACM/IEEE Conference on Supercomputing, pp. 18:1–18:11 (2009)

    Google Scholar 

  2. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (1994)

    Google Scholar 

  3. Cecka, C., Lew, A.J., Darve, E.: Assembly of finite element methods on graphics processors. Int. J. Numer. Methods Eng. 85(5), 640–669 (2011)

    Article  MATH  Google Scholar 

  4. Ciarlet, P.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  5. Cristini, P., Komatitsch, D.: Some illustrative examples of the use of a spectral-element method in ocean acoustics. J. Acoust. Soc. Am. 131(3), EL229–EL235 (2012)

    Article  Google Scholar 

  6. De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72(6), T81–T95 (2007)

    Article  Google Scholar 

  7. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010)

    Google Scholar 

  8. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)

    Book  Google Scholar 

  9. Fletcher, C.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37, 225–243 (1983)

    Article  MathSciNet  Google Scholar 

  10. Hughes, T.J.R.: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  11. Huthwaite, P.: Accelerated finite element elastodynamic simulations using the GPU. J. Comput. Phys. 257, 687–707 (2014)

    Article  MathSciNet  Google Scholar 

  12. Karypis, G., Kumar, V.: A fast and high-quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32(3), 417–444 (2006)

    Article  MathSciNet  Google Scholar 

  14. Klöckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Knepley, M.G., Terrel, A.R.: Finite element integration on GPUs. ACM Trans. Math. Softw. 39(2), 10 (2013) 10:1–10:13

    Google Scholar 

  16. Komatitsch, D., Michéa, D., Erlebacher, G.: Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA. J. Parallel Distrib. Comput. 69(5), 451–460 (2009)

    Article  Google Scholar 

  17. Kuzmin, D., Möller, M.: Algebraic flux correction II: compressible flow problems. Flux-Corrected Transport: Principles, Algorithms, and Applications, 1st edn. Scientific Computation, pp. 207–250. Springer Berlin Heidelberg (2005)

    Google Scholar 

  18. Kuzmin, D., Möller, M., Gurris, M.: Algebraic flux Correction II: compressible flow problems. Flux-Corrected Transport: Principles, Algorithms, and Applications, 2nd edn. Scientific Computation, pp. 193–238. Springer Berlin Heidelberg (2012)

    Google Scholar 

  19. Kuzmin, D., Möller, M., Turek, S.: Multidimensional FEM-FCT schemes for arbitrary time stepping. Int. J. Numer. Methods Fluids 42(3), 265–295 (2003)

    Article  MATH  Google Scholar 

  20. Kuzmin, D., Möller, M., Turek, S.: High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Methods Appl. Mech. Eng. 193, 4915–4946 (2004)

    Article  MATH  Google Scholar 

  21. Kuzmin, D., Turek, S.: Flux correction tools for finite elements. J. Comput. Phys. 175, 525–558 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Löhner, R.: Cache-efficient renumbering for vectorization. Int. J. Numer. Methods Biomed. Eng. 26, 628–636 (2008)

    Google Scholar 

  23. Markall, G., Slemmer, A., Ham, D., Kelly, P., Cantwell, C., Sherwin, S.: Finite element assembly strategies on multi-core and many-core architectures. Int. J. Numer. Methods Fluids 71(1), 80–97 (2013)

    Article  MathSciNet  Google Scholar 

  24. Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher, P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P., Tromp, J.: Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys. J. Int. 186(2), 721–739 (2011)

    Article  Google Scholar 

  25. Plaszewski, P., Banas, K., Maciol, P.: Higher order FEM numerical integration on GPUs with OpenCL. In: International Multiconference on Computer Science and Information Technology, pp. 337–342 (2010)

    Google Scholar 

  26. Rietmann, M., Messmer, P., Nissen-Meyer, T., Peter, D., Basini, P., Komatitsch, D., Schenk, O., Tromp, J., Boschi, L., Giardini, D.: Forward and adjoint simulations of seismic wave propagation on emerging large-scale GPU architectures. In: Proceedings of the SC’12 ACM/IEEE Conference on Supercomputing, pp. 38:1–38:11 (2012)

    Google Scholar 

  27. Seriani, G., Oliveira, S.P.: Dispersion analysis of spectral-element methods for elastic wave propagation. Wave Motion 45, 729–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Trépanier, J.Y., Reggio, M., Ait-Ali-Yahia, D.: An implicit flux-difference splitting method for solving the Euler equations on adaptive triangular grids. Int. J. Numer. Methods Heat Fluid Flows 3, 63–77 (1993)

    Article  Google Scholar 

  29. Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3(1), 1–32 (2008)

    MATH  Google Scholar 

  30. van Wijk, K., Komatitsch, D., Scales, J.A., Tromp, J.: Analysis of strong scattering at the micro-scale. J. Acoust. Soc. Am. 115(3), 1006–1011 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA), through DFG SFB 708 “3D Surface Engineering of Tools for the Sheet Metal Forming—Manufacturing, Modelling, Machining—”, by the European “Mont-Blanc: European scalable and power efficient HPC platform based on low-power embedded technology” #288777 project of call FP7-ICT-2011-7, and by the G8 and French ANR “Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues” (SEISMIC IMAGING project, ANR-10-G8EX-002). This work was granted access to the high-performance computing resources of the French supercomputing centre CCRT under allocation #2012-046351 awarded by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Göddeke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Göddeke, D., Komatitsch, D., Möller, M. (2014). Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Problems. In: Kindratenko, V. (eds) Numerical Computations with GPUs. Springer, Cham. https://doi.org/10.1007/978-3-319-06548-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06548-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06547-2

  • Online ISBN: 978-3-319-06548-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics