Abstract
Side-channel attacks are considered as one of the biggest threats against modern crypto-systems. This motivates the design of ciphers which are naturally resistant against side-channel attacks. The present paper proposes a scheme called DRECON to construct a block cipher with innate protection against differential power attacks (DPA). The scheme is motivated by tweakable block ciphers and is shown to be secure against first-order DPA using information theoretic metrics. DRECON is shown to be less expensive than masking and re-keying countermeasures from the implementation perspective and can be efficiently realized in both hardware and software platforms. On FPGAs especially, DRECON can optimally utilize the abundant block RAMs available and therefore have minimal overheads. We estimate the cost overhead of DRECON in micro-controllers and FPGAs, two common targets for cryptographic applications. Finally we demonstrate practical side-channel resistance of a DRECON implementation on a Xilinx Virtex-5 FPGA (SASEBO GII board).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdalla, M., Bellare, M.: Increasing the Lifetime of a Key: A Comparative Analysis of the Security of Re-keying Techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 546–559. Springer, Heidelberg (2000)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener (ed.) [40], pp. 398–412
Clavier, C., Coron, J.S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Koç, Ç.K., Paar (eds.) [12], pp. 252–263
Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel, B., Takagi, T. (eds.) [30], pp. 49–62
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Series in Telecommunications and Signal Processing. Wiley-Interscience (July 2006)
Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block Ciphers That Are Easier to Mask: How Far Can We Go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)
Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication” Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)
Guajardo, J., Mennink, B.: On side-channel resistant block cipher usage. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 254–268. Springer, Heidelberg (2011)
Guilley, S., Sauvage, L., Flament, F., Vong, V.N., Hoogvorst, P., Pacalet, R.: Evaluation of Power Constant Dual-Rail Logics Countermeasures against DPA with Design Time Security Metrics. IEEE Trans. Computers 59(9), 1250–1263 (2010)
Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resistant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)
Hoheisel, A.: Side-Channel Analysis Resistant Implementation of AES on Automotive Processors. Master’s thesis, Ruhr-University Bochum, Germany (June 2009)
Paar, C., Koç, Ç.K. (eds.): CHES 2000. LNCS, vol. 1965. Springer, Heidelberg (2000)
Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener (ed.) [40], pp. 388–397
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)
Maghrebi, H., Prouff, E., Guilley, S., Danger, J.-L.: A first-order leak-free masking countermeasure. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 156–170. Springer, Heidelberg (2012)
Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)
Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)
McEvoy, R.P., Tunstall, M., Whelan, C., Murphy, C.C., Marnane, W.P.: All-or-Nothing Transforms as a Countermeasure to Differential Side-Channel Analysis. IACR Cryptology ePrint Archive 2009, 185 (2009)
Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost Devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010)
Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant Software. In: Koç, Ç.K., Paar (eds.) [12], pp. 238–251
Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)
Moradi, A.: Statistical Tools Flavor Side-Channel Collision Attacks. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445. Springer, Heidelberg (2012)
Moradi, A., Mischke, O.: How Far Should Theory Be from Practice? - Evaluation of a Countermeasure. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 92–106. Springer, Heidelberg (2012)
Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)
Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)
Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: A small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp. 1173–1178. IEEE (2012)
Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)
Kocher, P.C.: Leak-Resistant Cryptograhic Indexed Key Update, US Patent 6539092 (2003)
Piret, G., Roche, T., Carlet, C.: PICARO – A Block Cipher Allowing Efficient Higher-Order Side-Channel Resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)
Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917, pp. 2011–2013. Springer, Heidelberg (2011)
Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.) [30], pp. 63–78
Regazzoni, F., Yi, W., Standaert, F.X.: FPGA Implementations of the AES Masked Against Power Analysis Attacks. In: Proceedings of 2nd International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE) (February 2011)
Research Center for Information Security National Institute of Advanced Industrial Science and Technology: Side-channel Attack Standard Evaluation Board SASEBO-GII Specification, Version 1.01 (2009)
Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)
Shah, S., Velegalati, R., Kaps, J.P., Hwang, D.: Investigation of DPA Resistance of Block RAMs in Cryptographic Implementations on FPGAs. In: Prasanna, V.K., Becker, J., Cumplido, R. (eds.) ReConFig, pp. 274–279. IEEE Computer Society (2010)
Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.: Leakage Resilient Cryptography in Practice. Cryptology ePrint Archive, Report 2009/341 (2009), http://eprint.iacr.org/
Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards. In: ESSCIRC 2002, pp. 403–406 (2002)
Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer Society (2004)
Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004)
Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hajra, S. et al. (2014). DRECON: DPA Resistant Encryption by Construction. In: Pointcheval, D., Vergnaud, D. (eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham. https://doi.org/10.1007/978-3-319-06734-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-06734-6_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06733-9
Online ISBN: 978-3-319-06734-6
eBook Packages: Computer ScienceComputer Science (R0)