Skip to main content

(Co)Algebraic Characterizations of Signal Flow Graphs

  • Chapter
Horizons of the Mind. A Tribute to Prakash Panangaden

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8464))

  • 1012 Accesses

Abstract

One of the first publications of Prakash Panangaden is about compositional semantics of digital networks, back in 1984. Digital networks transform streams of input signals to streams of output signals. If the output streams of the components of the network are functions of their input streams, then the behavior of the entire network can be nicely characterized by a recursive stream function. In this paper we consider signal flow graphs, i.e., open synchronous digital networks with feedbacks, obtained by composing amplifiers, mergers, copiers, and delayers. We give two characterizations of the recursive stream functions computed by signal flow graphs: one algebraic in terms of localization of modules of polynomials, and another coalgebraic in terms of Mealy machines. Our main result is that the two characterizations coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atiyah, M., MacDonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley series in mathematics. Westview Press (1994)

    Google Scholar 

  2. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats. Ph.D. thesis, Vrije Universiteit Amsterdam (2004)

    Google Scholar 

  3. Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: Coalgebraic logic and synthesis of Mealy machines. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 231–245. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bonsangue, M.M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Transactions on Computational Logic 14(1), 7–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W.-K.: On flow graph solutions of linear algebraic equations. SIAM Journal on Applied Mathematics 142, 136–142 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crochiere, R., Oppenheim, A.: Analysis of linear digital networks. Proceedings of IEEE 4, 581–595 (1975)

    Article  Google Scholar 

  7. Davis, A.L., Keller, R.M.: Dataflow program graphs. Computer 15(2), 26–41 (1982)

    Article  Google Scholar 

  8. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics Series. Springer (1995)

    Google Scholar 

  9. Hansen, H.H.: Subsequential transducers: a coalgebraic perspective. Information and Computation 208(12), 1368–1397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, H.H., Rutten, J.J.M.M.: Symbolic synthesis of Mealy machines from arithmetic bitstream functions. Scientific Annals of Computer Science 20, 97–130 (2010)

    MathSciNet  Google Scholar 

  11. Kahn, G.: The semantics of a simple language for parallel programming. Information Processing 74, 471–475 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Keller, R.M., Panangaden, P.: Semantics of networks containing indeterminate operators. In: Brookes, S.D., Winskel, G., Roscoe, A.W. (eds.) Seminar on Concurrency. LNCS, vol. 197, pp. 479–496. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  13. Keller, R.M., Panangaden, P.: Semantics of digital networks containing indeterminate modules. Distributed Computing 1(4), 235–245 (1986)

    Article  Google Scholar 

  14. Lam, T.Y.: Lectures on Modules and Rings. In: Graduate Texts in Math. Springer (1999)

    Google Scholar 

  15. Lambek, J.: A fixpoint theorem for complete categories. Mathematische Zeitschrift 103(2), 151–161 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mason, S.J.: Feedback theory: Some properties of linear flow graphs. In: Proceedings of IRE 41, pp. 1144–1156 (1953)

    Google Scholar 

  17. Massay, J.L., Sain, M.K.: Codes, Automata, and Continuous Systems: Explicit Interconnections. IEEE Trans. Automatic Control 12(6), 644–650 (1967)

    Article  Google Scholar 

  18. Massay, J.L., Sain, M.K.: Inverses of Linear Sequential Circuits. IEEE Trans. Comput. 17, 330–337 (1968)

    Article  MATH  Google Scholar 

  19. Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings of LICS 2010, pp. 421–430. IEEE (2010)

    Google Scholar 

  20. Parhi, K.K., Chen, Y.: Signal flow graphs and data flow graphs. In: Handbook of Signal Processing Systems, pp. 791–816. Springer (2010)

    Google Scholar 

  21. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rutten, J.J.M.M.: A coinductive calculus of streams. Mathematical Structures in Computer Science 15(1), 93–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rutten, J.J.M.M.: A tutorial on coinductive stream calculus and signal flow graphs. Theoretical Computer Science 343(3), 443–481 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rutten, J.J.M.M.: Rational streams coalgebraically. Logical Methods in Computer Science 3(9), 1–22 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Scherba, M.B., Roesser, R.P.: Computation of the transition matrix of a linear sequential circuit. IEEE Trans. Computers 22(4), 427–428 (1973)

    Article  MATH  Google Scholar 

  26. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Proceedings of LICS 1997, pp. 280–291. IEEE Computer Society (1997)

    Google Scholar 

  27. Vidyasagar, M.: Control System Synthesis. A Factorization Approach. The MIT Press (1988)

    Google Scholar 

  28. Wilf, H.S.: Generating functionology, 2nd edn. Academic Press, Inc. (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basold, H., Bonsangue, M., Hansen, H.H., Rutten, J. (2014). (Co)Algebraic Characterizations of Signal Flow Graphs. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds) Horizons of the Mind. A Tribute to Prakash Panangaden. Lecture Notes in Computer Science, vol 8464. Springer, Cham. https://doi.org/10.1007/978-3-319-06880-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06880-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06879-4

  • Online ISBN: 978-3-319-06880-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics