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Foreword

Indisputably, Support Vector Machines (SVM) and Evolutionary Algorithms (EA)
are both established algorithmic techniques and both have their merits and success
stories. It appears natural to combine the two, especially in the context of classifi-
cation. Indeed, many researchers have attempted to bring them together in or or the
other way. But if I would be asked who could deliver the most complete coverage
of all the important aspects of interaction between SVMs and EAs, together with a
thorough introduction into the individual foundations, the authors would be my first
choice, the most suitable candidates for this endeavor.

It is now more than ten years ago that I first met Ruxandra, and almost ten years
since I first met Catalin, and we have shared a lot of exciting research related and
more personal (but not less exciting) moments, and more is yet to come, as I hope.
Together, we have experienced some cool scientific successes and also a bitter defeat
when somebody had the same striking idea on one aspect of SVM and EA combina-
tion and published the paper when we had just generated the first, very encouraging
experimental results. The idea was not bad, nonetheless, because the paper we did
not write won a best paper award.

Catalin and Ruxandra are experts in SVMs and EAs, and they provide more than
an overview over the research on the combination of both with a focus on their
own contributions: they also point to interesting interactions that desire even more
investigation. And, unsurprisingly, they manage to explain the matter in a way that
makes the book very approachable and fascinating for researchers or even students
who only know one of the fields, or are completely new to both of them.

Bochum, February 2014 Mike Preuss



Preface

When we decided to write this book, we asked ourselves whether we could try and
unify everything that we have studied and developed under a same roof, where a
reader could find some of the old and the new, some of the questions and several
likely answers, some of the theory around support vector machines and some of
the practicality of evolutionary algorithms. All working towards a common target:
classification. We use it everyday, even without being aware of it: we categorize
people, food, music, movies, books. But when classification is involved at a larger
scale, like for the provision of living, health and security, effective computational
means to address it are vital.

This work, describing some of its facets in connection to support vector machines
and evolutionary algorithms, is thus an appropriate reading material for researchers
in machine learning and data mining with an emphasis on evolutionary computation
and support vector learning for classification. The basic concepts and the literature
review are however suitable also for introducing MSc and PhD students to these
two fields of computational intelligence. The book should be also interesting for
the practical environment, with an accent on computer aided diagnosis in medicine.
Physicians and those working in designing computational tools for medical diag-
nosis will find the discussed techniques helpful, as algorithms and experimental
discussions are included in the presentation.

There are many people who are somehow involved in the emergence of this book.
We thank Dr. Camelia Pintea for convincing and supporting us to have it published.
We express our gratitude to Prof. Lakhmi Jain, who so warmly sustained this project.
Acknowledgements also go to Dr. Thomas Ditzinger, who so kindly agreed to its
appearance.

Many thanks to Dr. Mike Preuss, who has been our friend and co-author for so
many years now; from him we have learnt how to experiment thoroughly and how to
write convincingly. We are also grateful to Prof. Thomas Bartz-Beielstein, who has
shown us friendship and the SPO. We also thank him, as well as Dr. Boris Naujoks
and Martin Zaefferer, for taking the time to review this book before being published.
Further on, without the continuous aid of Prof. Hans-Paul Schwefel and Prof. Günter
Rudolph, we would not have started and continued our fruitful collaboration with
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our German research partners; thanks also to the nice staff at TU Dortmund and
FH Cologne. In the same sense, we owe a lot to the Deutscher Akademischer Aus-
tauschdienst (DAAD) who supported our several research stays in Germany. Our
thoughts go as well to Prof. D. Dumitrescu, who introduced us to evolutionary al-
gorithms and support vector machines and who has constantly encouraged us, all
throughout PhD and beyond, to push the limits in our research work and dreams.

We also acknowledge that this work was partially supported by the grant number
42C/2014, awarded in the internal grant competition of the University of Craiova.
We also thank our colleagues from its Department of Computer Science for always
stimulating our research.

Our families deserve a lot of appreciation for always being there for us. And
last but most importantly, our love goes to our sons, Calin and Radu; without them,
we would not have written this book with such optimism, although we would have
finished it faster. Now, that it is complete, we will have more time to play together.
Although our almost 4-year old son solemnly just announced us that we would have
to defer playing until he also finished writing his own book.

Craiova, Romania Catalin Stoean
March 2014 Ruxandra Stoean
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