Skip to main content

Visuomotor Mapping Based on Hering’s Law for a Redundant Active Stereo Head and a 3 DOF Arm

  • Conference paper
  • First Online:
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2012)

Abstract

How humans are able to move the arm so to reach an object in space is far from being completely understood. The problem is often addressed computing a visuomotor mapping between image features and arm joints configurations. We propose a biologically inspired controller able to compute the visuomotor mapping of a simplified humanoid model. The simulated robotic system is composed by a redundant active stereo head and by a 3 degrees of freedom arm with human-like mechanics constraints. The head is driven by a biologically plausible controller based on the Hering’s law of equal innervation. The overall system is able to perceive a feature in space through the stereo cameras, compute the head joint angles to foveate it and, without moving the head, to perform the mapping between the foveation angles and the final joints configuration of the arm for reaching that feature. The visuomotor mapping is obtained over a radial basis network, using as input the foveation angles of the head. The network training is performed following the motor babbling schema, using a 10-fold cross-validation technique to validate the robustness of the mapping. Our results show how the visuomotor mapping is able to efficiently cover the whole arm workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aragon-Camarasa, G., Fattah, H., Siebert, J.P.: Towards a unified visual framework in a binocular active robot vision system. Robot. Auton. Syst. 58(3), 276–286 (2010)

    Article  Google Scholar 

  2. Chen, L.L.: Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control. J. Neurophysiol. 95, 3528–3542 (2006)

    Article  Google Scholar 

  3. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. Int. J. Robot. Res. (2011). doi:10.1177/0278364911410755. http://ijr.sagepub.com/content/early/2011/08/16/0278364911410755.abstract

  4. Chen, Y., Qian, N.: Coarse-to-fine disparity energy model with both phase-shift and position-shift receptive field mechanisms. Neural Comput. 16, 1545–1577 (2004)

    Article  MATH  Google Scholar 

  5. Chinellato, E., Antonelli, M., Grzyb, B.J., del Pobil, A.P.: Implicit sensorimotor mapping of the peripersonal space by gazing and reaching. IEEE Trans. Auton. Ment. Dev. 3(1), 43–53 (2011). doi:10.1109/TAMD.2011.2106781

    Article  Google Scholar 

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  7. Gibaldi, A., Canessa, A., Chessa, M., Sabatini, S.P., Solari, F.: A neuromorphic control module for real-time vergence eye movements on the iCub robot head. In: Proceedings of 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 543–550 (2011). doi:10.1109/Humanoids.2011.6100861

  8. Gibaldi, A., Chessa, M., Canessa, A., Sabatini, S.P., Solari, F.: A cortical model for binocular vergence control without explicit calculation of disparity. Neurocomputing 73, 1065–1073 (2010)

    Article  Google Scholar 

  9. Glaser, C., Joublin, F., Goerick, C.: Learning and use of sensorimotor schemata maps. In: Proceedings of IEEE 8th International Conference on Development and Learning ICDL 2009, pp. 1–8 (2009). doi:10.1109/DEVLRN.2009.5175509

  10. Hemion, N.J., Joublin, F., Rohlfing, K.J.: A competitive mechanism for self-organized learning of sensorimotor mappings. In: Proceedings of IEEE International Conference on Development and Learning (ICDL), vol. 2, pp. 1–6 (2011). doi:10.1109/DEVLRN.2011.6037364

  11. Hoffmann, M., Marques, H., Arieta, A., Sumioka, H., Lungarella, M., Pfeifer, R.: Body schema in robotics: a review. IEEE Trans. Auton. Ment. Dev. 2(4), 304–324 (2010). doi:10.1109/TAMD.2010.2086454

    Article  Google Scholar 

  12. Hoyer, P.O., Hyvarinen, A.: Independent component analysis applied to feature extraction from colour and stereo images. Netw. Comput. Neural Syst. 11, 191–210 (2000)

    Article  MATH  Google Scholar 

  13. Hyvarinen, A., Hoyer, P.O.: A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vis. Res. 41, 24132423 (2001)

    Article  Google Scholar 

  14. Kyriakoulis, N., Gasteratos, A., Mouroutsos, S.G.: Fuzzy vergence control for an active binocular vision system. In: Proceedings of 7th IEEE International Conference on Cybernetic Intelligent Systems CIS 2008, pp. 1–5 (2008). doi:10.1109/UKRICIS.2008.4798931

  15. Mutti, F., Alessandro, C., Angioletti, M., Bianchi, A., Gini, G.: Learning and evaluation of a vergence control system inspired by hering law. In: IEEE International Conference on Biomedical Robotics and Biomechatronics (BIOROB) (2012)

    Google Scholar 

  16. Mutti, F., Gini, G.: Bio-inspired disparity estimation system from energy neurons. In: ICABB (2010)

    Google Scholar 

  17. Ohzawa, I., De Angelis, G.C., Freeman, R.D.: Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990)

    Article  Google Scholar 

  18. Olshausen, B.A., Field, D.J.: Emergence of simple cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  19. Pouget, A., Sejnowski, T.J.: Spatial transformations in parietal cortex using basis functions. J. Cogn. Neurosci. 9(2), 222–237 (1997)

    Article  Google Scholar 

  20. Qian, N.: Computing stereo disparity and motion with known binocular cell proprieties. Neural Comput. 6, 390–404 (1994)

    Article  Google Scholar 

  21. Qu, C., Shi, B.E.: The role of orientation diversity in binocular vergence control. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), pp. 2266–2272 (2011). doi:10.1109/IJCNN.2011.6033511

  22. Saegusa, R., Metta, G., Sandini, G.: Own body perception based on visuomotor correlation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1044–1051 (2010). doi:10.1109/IROS.2010.5650974

  23. Saegusa, R., Metta, G., Sandini, G., Sakka, S.: Active motor babbling for sensorimotor learning. In: Proceedings of IEEE International Conference on Robotics and Biomimetics ROBIO 2008, pp. 794–799 (2009). doi:10.1109/ROBIO.2009.4913101

  24. Samarawickrama, J.G., Sabatini, S.P.: Version and vergence control of a stereo camera head by fitting the movement into the Hering’s law. In: Proceedings of Fourth Canadian Conference on Computer and Robot Vision CRV ’07, pp. 363–370 (2007). doi:10.1109/CRV.2007.69

  25. Shimonomura, K., Yagi, T.: Neuromorphic vergence eye movement control of binocular robot vision. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1774–1779 (2010). doi:10.1109/ROBIO.2010.5723600

  26. Tsang, E.K.C., Lam, S.Y.M., Meng, Y., Shi, B.E.: Neuromorphic implementation of active gaze and vergence control. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1076–1079 (2008)

    Google Scholar 

  27. Tsang, E.K.C., Shi, B.E.: Disparity estimation by pooling evidence from energy neurons. IEEE Trans. Neural Netw. 20(11), 1772–1782 (2009)

    Article  Google Scholar 

  28. Wang, Y., Shi, B.E.: Autonomous development of vergence control driven by disparity energy neuron populations. Neural Comput. 22, 730–751 (2010)

    Article  MATH  Google Scholar 

  29. Wang, Y., Shi, B.E.: Improved binocular vergence control via a neural network that maximizes an internally defined reward. IEEE Trans. Auton. Ment. Dev. 3(3), 247–256 (2011). doi:10.1109/TAMD.2011.2128318

    Article  Google Scholar 

Download references

Acknowledgments

Partial support to this work has been provided by the 2010-2012 Italian-Korean bilateral project (ICT-CNR and KAIST). The authors gratefully acknowledge the contribution of the NVIDIA Academic Partnership for providing GPU computing devices.

This work was partially developed at Artificial Intelligence Laboratory, Department of Informatics, University of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Mutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Mutti, F., Gini, G. (2014). Visuomotor Mapping Based on Hering’s Law for a Redundant Active Stereo Head and a 3 DOF Arm. In: Di Caro, G., Theraulaz, G. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-319-06944-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06944-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06943-2

  • Online ISBN: 978-3-319-06944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics