Skip to main content

Bioinspired Obstacle Avoidance Algorithms for Robot Swarms

  • Conference paper
  • First Online:
Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2012)

Abstract

Recent work in socio-biological sciences have introduced simple heuristics that accurately explain the behavior of pedestrians navigating in an environment while avoiding mutual collisions. We have adapted and implemented such heuristics for distributed obstacle avoidance in robot swarms, with the goal of obtaining human-like navigation behaviors which would be perceived as friendly by humans sharing the same spaces. In this context, we study the effects of using different sensing modalities and robot types, and introduce robot’s emotional states, which allows us to modulate system’s group behavior. Experimental results are provided for both real and simulated robots. The extensive quantitative simulations show the macroscopic behavior of the system in various scenarios, where we observe emergent collective behaviors – some of which are similar to those observed in human crowds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  2. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193 (2010)

    Google Scholar 

  3. Shillert, Z., Fiorini, P.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  4. Kluge, B., Prassler, E.: Recursive agent modeling with probabilistic velocity obstacles for mobile robot navigation among humans. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 376–381 (2003)

    Google Scholar 

  5. van den Berg, J., Manocha, D., Lin, M.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)

    Google Scholar 

  6. Snape, J., van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 27(4), 696–706 (2011)

    Article  Google Scholar 

  7. Guy, S.J., Lin, M.C., Manocha, D.: Modeling collision avoidance behavior for virtual humans. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, pp. 575–582 (2010)

    Google Scholar 

  8. Gibson, J.J.: Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 49(3), 182–194 (1958)

    Article  Google Scholar 

  9. François, M., Morice, A.H., Bootsma, R.J., Montagne, G.: Visual control of walking velocity. Neurosci. Res. 70(2), 214–219 (2011)

    Article  Google Scholar 

  10. Bootsma, R.J., Craig, C.M.: Information used in detecting upcoming collision. Perception 32(5), 525–544 (2003)

    Article  Google Scholar 

  11. Lee, D.N.: A theory of visual control of braking based on information about time-to-collision. Perception 5(4), 437–459 (1976)

    Article  Google Scholar 

  12. Coull, J.T., Vidal, F., Goulon, C., Nazarian, B., Craig, C.: Using time-to-contact information to assess potential collision modulates both visual and temporal prediction networks. Front. Hum. Neurosci. 2, 10 (2008)

    Article  Google Scholar 

  13. Krichmar, J.L.: The neuromodulatory system: a framework for survival and adaptive behavior in a challenging world. Adapt. Behav. 16(6), 385–399 (2008)

    Article  Google Scholar 

  14. Cox, B.R., Krichmar, J.L.: Neuromodulation as a robot controller: a brain inspired strategy for controlling autonomous robots. IEEE Robot. Autom. Mag. 16(3), 1–25 (2009)

    Article  Google Scholar 

  15. Krichmar, J.L.: A biologically inspired action selection algorithm based on principles of neuromodulation. In: Proceedings of IEEE World Congress on Computational Intelligence, pp. 10–15 (2012)

    Google Scholar 

  16. Hall, E.T.: A system for the notation of proxemic behavior. Am. Anthropol. 65(5), 1003–1026 (1963)

    Article  Google Scholar 

  17. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  18. Johansson, A.: Constant-net-time headway as key mechanism behind pedestrian flow dynamics. Phys. Rev. E 80, 026120 (2009)

    Article  MathSciNet  Google Scholar 

  19. Moussaïd, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O., Lemercier, S., Pettré, J., Appert-Rolland, C., Degond, P., Theraulaz, G.: Traffic instabilities in self-organized pedestrian crowds. PLoS Comput. Biol. 8(3), e1002442 (2012)

    Article  Google Scholar 

  20. Helbing, D., Molnár, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environ. Plan. B Plan. Des. 28(3), 361–383 (2001)

    Article  Google Scholar 

  21. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B 276(1668), 2755–2762 (2009)

    Article  Google Scholar 

  22. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A., Christensen, A.L., Decugnière, A., Di Caro, G.A., Ducatelle, F., Ferrante, E., Förster, A., Martinez Gonzales, J., Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., Montes de Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut, A.E., Vaussard, F.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. (2012, to appear)

    Google Scholar 

  23. Yamori, K.: Going with the flow: micro–macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychol. Rev. 105(3), 530–557 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Guzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Guzzi, J., Giusti, A., Gambardella, L.M., Di Caro, G.A. (2014). Bioinspired Obstacle Avoidance Algorithms for Robot Swarms. In: Di Caro, G., Theraulaz, G. (eds) Bio-Inspired Models of Network, Information, and Computing Systems. BIONETICS 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-319-06944-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06944-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06943-2

  • Online ISBN: 978-3-319-06944-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics