Abstract
In recent years, it has been realized that many problems in data mining can be seen as pure optimisation problems. In this work, we investigate the problem of constraint-based clustering from an optimisation point of view. The use of constraints in clustering is a recent development and allows to encode prior beliefs about desirable clusters. This paper proposes a new solution for minimum-sum-of-squares clustering under constraints, where the constraints considered are must-link constraints, cannot-link constraints and anti-monotone constraints on individual clusters. Contrary to most earlier approaches, it is exact and provides a fundamental approach for including these constraints. The proposed approach uses column generation in an integer linear programming setting. The key insight is that these constraints can be pushed into a branch-and-bound algorithm used for generating new columns. Experimental results show the feasibility of the approach and the promise of the branch-and-bound algorithm that solves the subproblem directly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of euclidean sum-of-squares clustering. Machine Learning 75(2), 245–248 (2009)
Aloise, D., Hansen, P.: A branch-and-cut SDP-based algorithm for minimum sum-of-squares clustering. Pesquisa Operacional 29, 503–516 (2009)
Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for minimum sum-of-squares clustering. Mathematical Programming 131(1-2), 195–220 (2012)
Bache, K., Lichman, M.: UCI machine learning repository (2013)
Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC Press (2008)
Brusco, M.J., Stahl, S.: Minimum within-cluster sums of squares partitioning. In: Branch-and-Bound Applications in Combinatorial Data Analysis. Springer (2005)
Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 419–434. Springer, Heidelberg (2013)
Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with instance and cluster level constraints. Data Min. Knowl. Discov. 14(1), 25–61 (2007)
Davidson, I., Ravi, S.S., Shamis, L.: A sat-based framework for efficient constrained clustering. In: SDM, pp. 94–105 (2010)
Demiriz, A., Bennett, K., Bradley, P.: Using assignment constraints to avoid empty clusters in k-means clustering. In: Constrained Clustering: Algorithms, Applications and Theory. Chapman & Hall/CRC (2008)
Diehr, G.: Evaluation of a branch and bound algorithm for clustering. SIAM Journal on Scientific and Statistical Computing 6(2), 268–284 (1985)
Dinkelbach, W.: On nonlinear fractional programming. Management Science 13(7), 492–498 (1967)
du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An interior point algorithm for minimum sum-of-squares clustering. SIAM J. Sci. Comput. 21(4), 1485–1505 (1999)
Gondek, D., Hofmann, T.: Non-redundant data clustering. In: ICDM, pp. 75–82 (2004)
Jensen, R.E.: A dynamic programming algorithm for cluster analysis. Operations Research 17(6), 1034–1057 (1969)
Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Mathematical Programming 62(1-3), 133–151 (1993)
Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A branch and bound clustering algorithm. IEEE Trans. Comput. 24(9), 908–915 (1975)
Mueller, M., Kramer, S.: Integer linear programming models for constrained clustering. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 159–173. Springer, Heidelberg (2010)
Os, B., Meulman, J.: Improving dynamic programming strategies for partitioning. Journal of Classification 21(2), 207–230 (2004)
Saglam, B., Salman, F.S., Sayin, S., Türkay, M.: A mixed-integer programming approach to the clustering problem with an application in customer segmentation. European Journal of Operational Research 173(3), 866–879 (2006)
Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Springer (2003)
Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: ICML, pp. 1103–1110 (2000)
Xia, Y., Peng, J.: A cutting algorithm for the minimum sum-of-squared error clustering. In: SDM (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Babaki, B., Guns, T., Nijssen, S. (2014). Constrained Clustering Using Column Generation. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-07046-9_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07045-2
Online ISBN: 978-3-319-07046-9
eBook Packages: Computer ScienceComputer Science (R0)