Skip to main content

Mining (Soft-) Skypatterns Using Dynamic CSP

  • Conference paper
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014)

Abstract

Within the pattern mining area, skypatterns enable to express a user-preference point of view according to a dominance relation. In this paper, we deal with the introduction of softness in the skypattern mining problem. First, we show how softness can provide convenient patterns that would be missed otherwise. Then, thanks to Dynamic CSP, we propose a generic and efficient method to mine skypatterns as well as soft ones. Finally, we show the relevance and the effectiveness of our approach through a case study in chemoinformatics and experiments on UCI benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajorath, J., Auer, J.: Emerging chemical patterns: A new methodology for molecular classification and compound selection. J. of Chemical Information and Modeling 46, 2502–2514 (2006)

    Article  Google Scholar 

  2. Bistarelli, S., Bonchi, F.: Soft constraint based pattern mining. Data Knowl. Eng. 62(1), 118–137 (2007)

    Article  Google Scholar 

  3. Börzönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: 17th Int. Conf. on Data Engineering, pp. 421–430. Springer (2001)

    Google Scholar 

  4. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: KDD 2008, pp. 204–212. ACM (2008)

    Google Scholar 

  5. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th SIAM International Conference on Data Mining. SIAM (2007)

    Google Scholar 

  6. Gavanelli, M.: An algorithm for multi-criteria optimization in csps. In: van Harmelen, F. (ed.) ECAI, pp. 136–140. IOS Press (2002)

    Google Scholar 

  7. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming perspective. Artif. Intell. 175(12-13), 1951–1983 (2011)

    Article  MathSciNet  Google Scholar 

  8. Jin, W., Han, J., Ester, M.: Mining thick skylines over large databases. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 255–266. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of ACM 22(4), 469–476 (1975)

    Article  MathSciNet  Google Scholar 

  11. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline operator. In: ICDE 2007, pp. 86–95 (2007)

    Google Scholar 

  12. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and K. Discovery 1(3), 241–258 (1997)

    Article  Google Scholar 

  13. Matousek, J.: Computing dominances in E n. Inf. Process. Lett. 38(5), 277–278 (1991)

    Article  MathSciNet  Google Scholar 

  14. Kralj Novak, P., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research 10, 377–403 (2009)

    MATH  Google Scholar 

  15. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

    Article  Google Scholar 

  16. Papadias, D., Yiu, M., Mamoulis, N., Tao, Y.: Nearest neighbor queries in network databases. In: Encyclopedia of GIS, pp. 772–776 (2008)

    Google Scholar 

  17. Papadopoulos, A.N., Lyritsis, A., Manolopoulos, Y.: Skygraph: an algorithm for important subgraph discovery in relational graphs. Data Min. Knowl. Discov. 17(1), 57–76 (2008)

    Article  MathSciNet  Google Scholar 

  18. Poezevara, G., Cuissart, B., Crémilleux, B.: Extracting and summarizing the frequent emerging graph patterns from a dataset of graphs. J. Intell. Inf. Syst. 37(3), 333–353 (2011)

    Article  Google Scholar 

  19. Soulet, A., Raïssi, C., Plantevit, M., Crémilleux, B.: Mining dominant patterns in the sky. In: ICDM, pp. 655–664 (2011)

    Google Scholar 

  20. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB, pp. 301–310 (2001)

    Google Scholar 

  21. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Soft threshold constraints for pattern mining. In: Discovery Science, pp. 313–327 (2012)

    Google Scholar 

  22. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments: A survey. Constraints 10(3), 253–281 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ugarte Rojas, W., Boizumault, P., Loudni, S., Crémilleux, B., Lepailleur, A. (2014). Mining (Soft-) Skypatterns Using Dynamic CSP. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07046-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07045-2

  • Online ISBN: 978-3-319-07046-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics