Abstract
This chapter explores some stochastic local search heuristics that incorporate a data mining procedure. The basic idea of using data mining inside a heuristic is to obtain knowledge from previous iterations performed by a heuristic to guide the search in next iterations. Patterns extracted from good quality solutions can be used to guide the search, leading to a more effective exploration of the solution space. This survey shows that memoryless heuristics may benefit from the use of data mining by obtaining better solutions in smaller computational times. Also, some results are revisited to demonstrate that even memory-based heuristics can benefit from using data mining by reducing the computational time to achieve good quality solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, Washington, DC, pp 207–216
Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th international conference on very large data bases, Santiago, pp 487–499
Aiex R, Resende MGC, Ribeiro CC (2007) TTTplots: a perl program to create time-to-target plots. Optim Lett 1:355–366
Aloise D, Ribeiro CC (2011) Adaptive memory in multistart heuristics for multicommodity network design. J Heuristics 17:153–179
Barbalho H, Rosseti I, Martins SL, Plastino A (2013) A hybrid data mining GRASP with path-relinking. Comput Oper Res 40:3159–3173
Beasley JE (1985) A note on solving large p-median problems. Eur J Oper Res 21:270–273
Breslau L, Diakonikolas I, Duffield N, Gu Y, Hajiaghayi M, Johnson DS, Karloff H, Resende MGC, Sen S (2011) Disjoint-path facility location: theory and practice. In: Proceedings of the thirteenth workshop of algorithm engineering and experiments (ALENEX11). SIAM, Philadelphia, pp 60–74
Campos V, Piñana E, Martí R (2011) Adaptive memory programming for matrix bandwidth minimization. Ann Oper Res 183:7–23
Chaovalitwongse W, Oliveira C, Chiarini B, Pardalos P, Resende MGC (2011) Revised GRASP with path-relinking for the linear ordering problem. J Comb Optim 22:1–22
Dahl G, Johannessen B (2004) The 2-path network problem. Networks 43:190–199
Eiben A, Smith J (2007) Introduction to evolutionary computing. Springer-Verlag, Berlin
Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133
Fleurent C, Glover F (1999) Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS J Comput 2:198–204
García-Martínez C, Rodriguez F, Lozano M (2012) Arbitrary function optimisation with metaheuristics. Soft Comput 16:2115–2133
Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control Cybern 39:653–684
Glover F, Laguna M, Martí R (2003) Scatter search and path relinking: advances and applications. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, pp 1–35
Goethals B, Zaki MJ (2004) Advances in frequent itemset mining implementations: report on fimi’03. SIGKDD Explor Newsl 6:109–117
Gonçalves LB, Martins SL, Ochi LS (2010) Effective heuristics for the set covering with pairs problem. Int Trans Oper Res 17:739–751
Grahne G, Zhu J (2003) Efficiently using prefix-trees in mining frequent itemsets. In: Proceedings of the IEEE ICDM workshop on frequent itemset mining implementations, Melbourne, Florida, USA
Guerine M, Rosseti I, Plastino A (2014) Extending the hybridization of metaheuristics with data mining to a broader domain. In: Proceedings of the 16th international conference on enterprise systems, Lisboa, pp 395–406
Han J, Kamber M (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, San Francisco
Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD international conference on management of data, Washington, DC, pp 1–12
Hansen P, Mladenović N (1997) Variable neighborhood search for the p-median. Locat Sci 5:207–226
Hansen P, Mladenović N, Perez-Brito D (2001) Variable neighborhood decomposition search. J Heuristics 7:335–350
Hassin R, Segev D (2005) The set cover with pairs problem. In: Sarukkai S, Sen S (eds) FSTTCS 2005: foundations of software technology and theoretical computer science. Lecture notes in computer science, vol 3821. Springer, Berlin/Heidelberg, pp 164–176
Hernández-Pérez H, Salazar-González JJ (2004) A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discret Appl Math 145:453–459
Hernández-Pérez H, Salazar-González JJ, Rodríguez-Martín I (2009) A hybrid GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling salesman problem. Comput Oper Res 36:1639–1645. https://doi.org/10.1016/j.cor.2008.03.008
Hoos HH, Stützle T (2004) Tutorial(AAAI-04): stochastic local search: foundations and applications. Elsevier, Burlington. http://www.sls-book.net/Slides/aaai-04-tutorial.pdf
Hoos HH, Stützle T (2005) Stochastic local search: foundations and applications. Elsevier, San Francisco
Igel C, Toussaint M (2003) On classes of functions for which no free lunch results hold. Inf Process Lett IPL 86:317–321
Jourdan L, Dhaenens C, Talbi EG (2006) Using datamining techniques to help metaheuristics: a short survey. In: Almeida F, Blesa Aguilera M, Blum C, Moreno Vega JM, Pérez Pérez M, Roli A, Sampels M (eds) Hybrid metaheuristics. Lecture notes in computer science, vol 4030. Springer, Berlin/Heidelberg, pp 57–69
Kariv O, Hakimi SL (1979) An algorithmic approach to network location problems. II: the p-medians. SIAM J Appl Math 37:513–538
Laguna M, Martí R (1999) GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J Comput 11:44–52
Li B, Chen F, Yin L (2000) Server replication and its placement for reliable multicast. In: Proceedings of the 9th international conference on computer communication and networks, Las Vegas, pp 396–401
Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res 21:498–516
Lodi A, Allemand K, Liebling TM (1999) An evolutionary heuristic for quadratic 01 programming. Eur J Oper Res 119:662–670
Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics, vol. 57. Springer, Boston, pp 320–353
Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100
Plastino A, Barbalho H, Santos LFM, Fuchshuber R, Martins SL (2014) Adaptive and multi-mining versions of the DM-GRASP hybrid metaheuristic. J. Heuristics 20:39–74
Plastino A, Fuchshuber R, Martins SL, Freitas AA, Salhi S (2011) A hybrid data mining metaheuristic for the p-median problem. Stat Anal Data Min 4:313–335
Reinelt G (1991) TSPLIB: a traveling salesman problem library. ORSA J Comput 3:376–384. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
Resende MGC, Ribeiro CC (2005) GRASP with path-relinking: recent advances and applications. In: Ibaraki T, Nonobe K, Yagiura M (eds) Metaheuristics: progress as real problem solvers. Operations research/computer science interfaces series, vol 32. Springer, New York, pp 29–63
Resende MGC, Werneck RF (2003) On the implementation of a swap-based local search procedure for the p-median problem. In: Proceedings of the thirteenth workshop of algorithm engineering and experiments (ALENEX03). SIAM, Baltimore, Maryland, USA, pp 119–127
Resende MGC, Werneck RF (2004) A hybrid heuristic for the p-median problem. J Heuristics 10:59–88
Ribeiro CC, Resende MGC (2012) Path-relinking intensification methods for stochastic local search algorithms. J Heuristics 18:193–214
Ribeiro CC, Rosseti I (2007) Efficient parallel cooperative implementations of GRASP heuristics. Parallel Comput 33:21–35
Ribeiro MH, Plastino A, Martins SL (2006) Hybridization of grasp metaheuristic with data mining techniques. J Math Model Algorithms 5:23–41
Santos HG, Ochi LS, Marinho EH, Drummond LM (2006) Combining an evolutionary algorithm with data mining to solve a single-vehicle routing problem. Neurocomputing 70: 70–77
Santos LF, Martins SL, Plastino A (2008) Applications of the DM-GRASP heuristic: a survey. Int Trans Oper Res 15:387–416
Senne ELF, Lorena LAN (2000) Langrangean/surrogate heuristics for p-median problems. In: Laguna M, González-Velarde JL (eds) Computing tools for modeling, optimization and simulation: interfaces in computer science and operations research. Operations research/computer science interfaces series, vol 32. Kluwer, Boston, pp 115–130
Taillard ED (2003) Heuristic methods for large centroid clustering problems. J Heuristics 9: 51–74
Tan PN, Steinback M, Kumar V (2015) Introduction to data mining, 2nd edn. Addison-Wesley, Boston, MA, USA
Tansel BC, Francis RL, Lowe TJ (1983) A hybrid heuristic for the p-median problem. J Heuristics 29:482–511
Witten IH, Frank E (2011) Data mining: practical machine learning tools and techniques with java implementations, 3rd edn. Morgan Kaufmann, Burlington
Wolpert DH, Macread WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82
Zaki MJ, Wagner Meira J (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press, New York
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
de Lima Martins, S., Rosseti, I., Plastino, A. (2018). Data Mining in Stochastic Local Search. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-07124-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07123-7
Online ISBN: 978-3-319-07124-4
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering