Skip to main content

Trees and Forests

  • Reference work entry
  • First Online:
Handbook of Heuristics

Abstract

Trees and forests have been a fascinating research topic in Operations Research (OR)/Management Science (MS) throughout the years because they are involved in numerous difficult problems, have interesting theoretical properties, and cover a large number of practical applications. A tree is a finite undirected connected simple graph with no cycles, while a set of independent trees is called a forest. A spanning tree is a tree covering all nodes of a graph. In this chapter, key components for solving difficult tree and forest problems, as well as insights to develop efficient heuristics relying on such structures, are surveyed. They are usually combined to obtain very efficient metaheuristic algorithms, hybrid methods, and matheuristics. Some emerging topics and trends in trees and forests are pointed out. This is followed by two case studies: a Lagrangian-based heuristic for the minimum degree-constrained spanning tree problem and an evolutionary algorithm for a generalization of the bounded-diameter minimum spanning tree problem. Both problems find applications in network design, telecommunication, and transportation fields, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achuthan NR, Caccetta L, Caccetta PA, Geelen JF (1994) Computational methods for the diameter restricted minimum weight spanning tree problem. Australas J Comb 10:51–71

    Google Scholar 

  2. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows – theory, algorithms and applications. Prentice Hall, Upper Saddle River

    Google Scholar 

  3. Álvarez-Miranda E, Ljubić I, Toth P (2013) Exact approaches for solving robust prize-collecting Steiner tree problems. Eur J Ope Res 229(3):599–612

    Google Scholar 

  4. Andrade R, Freitas AT (2013) Disjunctive combinatorial branch in a subgradient tree algorithm for the DCMST problem with VNS-Lagrangian bounds. Electron Notes Discrete Math 41(0):5–12

    Google Scholar 

  5. Andrade R, Lucena A, Maculan N (2006) Using Lagrangian dual information to generate degree constrained spanning trees. Discrete Appl Math 154(5):703–717

    Google Scholar 

  6. Arroyo JEC, Vieira PS, Vianna DS (2008) A GRASP algorithm for the multi-criteria minimum spanning tree problem. Ann Oper Res 159:125–133

    Google Scholar 

  7. Barahona F, Anbil R (2000) The volume algorithm: producing primal solutions with the subgradient method. Math Program 87:385–399

    Google Scholar 

  8. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6(2):154–160

    Google Scholar 

  9. Beasley JE (1993) Lagrangean relaxation. In: Reeves C (ed) Modern heuristic techniques for combinatorial problems. Wiley, New York, pp 243–303

    Google Scholar 

  10. Camerini PM, Galbiati G, Maffioli F (1980) Complexity of spanning tree problems: part I. Eur J Oper Res 5(5):346–352

    Google Scholar 

  11. Carrano EG, Fonseca CM, Takahashi RHC, Pimenta LCA, Neto OM (2007) A preliminary comparison of tree encoding schemes for evolutionary algorithms. In: IEEE international conference on systems, man and cybernetics, ISIC, Montreal, pp 1969–1974

    Google Scholar 

  12. Cayley A (1889) A theorem on trees. Q J Pure Appl Math 23:376–378

    MATH  Google Scholar 

  13. Cerrone C, Cerulli R, Raiconi A (2014) Relations, models and a memetic approach for three degree-dependent spanning tree problems. Eur J Oper Res 232(3):442–453

    Article  MathSciNet  Google Scholar 

  14. Cormen TH, Leiserson CE, Rivest R, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press, Cambridge

    MATH  Google Scholar 

  15. da Cunha AS, Lucena A (2007) Lower and upper bounds for the degree-constrained minimum spanning tree problem. Networks 50(1):55–66

    Article  MathSciNet  Google Scholar 

  16. da Cunha AS, Lucena A, Maculan N, Resende MGC (2009) A relax-and-cut algorithm for the prize-collecting Steiner problem in graphs. Discrete Appl Math 157(6):1198–1217

    Article  MathSciNet  Google Scholar 

  17. de Sousa EG, Santos AC, Aloise DJ (2015) An exact method for solving the bi-objective minimum diameter-cost spanning tree problem. RAIRO Oper Rech 49:143–160

    Article  MathSciNet  Google Scholar 

  18. de Souza MC, Duhamel C, Ribeiro CC (2003) A GRASP heuristic for the capacitated minimum spanning tree problem using a memory-based local search strategy. In: Resende M, de Sousa J (eds) Metaheuristics: computer decision-making. Kluwer, Boston, pp 627–658

    Chapter  Google Scholar 

  19. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  20. Duhamel C, Gouveia L, Moura P, Souza M (2008) Models and heuristics for a minimum arborescence problem. Networks 51(1):34–47

    Article  MathSciNet  Google Scholar 

  21. Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 27:1–18

    Article  MathSciNet  Google Scholar 

  22. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-Completeness. W.H. Freeman, New York

    MATH  Google Scholar 

  23. Gottlieb J, Julstrom BA, Raidl GR, Rothlauf F (2001) Prüfer numbers: a poor representation of spanning trees for evolutionary search. In: Spector L, Goodman ED et al (eds) Proceedings of the genetic and evolutionary computation conference (GECCO-2001). Morgan Kaufmann, San Francisco, pp 343–350

    Google Scholar 

  24. Gouveia L, Leitner M, Ljubić I (2012) On the hop constrained Steiner tree problem with multiple root nodes. In: Ridha Mahjoub A, Markakis V, Milis I, Paschos VangelisTh (eds) Combinatorial optimization. Volume 7422 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 201–212

    Google Scholar 

  25. Gouveia L, Magnanti TL (2003) Network flow models for designing diameter-constrained minimum-spanning and Steiner trees. Networks 41:159–173

    Article  MathSciNet  Google Scholar 

  26. Gouveia L, Simonetti L, Uchoa E (2011) Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Math Program 128:123–148

    Article  MathSciNet  Google Scholar 

  27. Gruber M, Raidl GR (2005) A new 0-1 ILP approach for the bounded diameter minimum spanning tree problem. In: Hansen P, Mladenovic N, Pérez JAM, Batista BM, MorenoVega JM (eds) The 2nd international network optimization conference, Lisbon, vol 1, pp 178–185

    Google Scholar 

  28. Guignard M (2003) Lagrangean relaxation. In: Cerdá MAL, Jurado IG (eds) Trabajos de Investigación Operativa, vol 11, chapter2. Sociedad de Estadística e Investigatión Operativa, Madrid, pp 151–228

    Google Scholar 

  29. Held M, Karp RM (1970) The travelling-salesman problem and minimum spanning trees. Oper Res 18:1138–1162

    Article  Google Scholar 

  30. Held M, Karp RM (1971) The travelling-salesman problem and minimum spanning trees: part II. Math Program 1:6–25

    Article  Google Scholar 

  31. Held MH, Wolfe P, Crowder HD (1974) Validation of subgradient optimization. Math Program 6:62–88

    Article  MathSciNet  Google Scholar 

  32. Henschel R, Leal-Taixé L, Rosenhahn B (2014) Efficient multiple people tracking using minimum cost arborescences. In: Jiang X, Hornegger J, Koch R (eds) Pattern recognition lecture notes in computer science. Springer, Cham, pp 265–276

    Google Scholar 

  33. Ho J-M, Lee DT, Chang C-H, Wong K (1991) Minimum diameter spanning trees and related problems. SIAM J Comput 20(5):987–997

    Article  MathSciNet  Google Scholar 

  34. Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem. Annals of discrete mathematics, vol 53. Elsevier, Amsterdam

    Google Scholar 

  35. Kasperski A, Zieliński P (2011) On the approximability of robust spanning tree problems. Theor Comput Sci 412(4–5):365–374

    Article  MathSciNet  Google Scholar 

  36. Krishnamoorthy M, Ernst AT, Sharaiha YM (2001) Comparison of algorithms for the degree constrained minimum spanning tree. J Heuristics 7(6):587–611

    Article  Google Scholar 

  37. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Am Math Soci 7:48–50

    Article  MathSciNet  Google Scholar 

  38. Leitner M, Ljubic I, Sinnl M (2015) A computational study of exact approaches for the bi-objective prize-collecting Steiner tree problem. INFORMS J Comput 27(1):118–134

    Article  Google Scholar 

  39. Li Y, Yu J, Tao D (2014) Genetic algorithm for spanning tree construction in P2P distributed interactive applications. Neurocomputing 140(0):185–192

    Google Scholar 

  40. Lucena A, Ribeiro C, Santos AC (2010) A hybrid heuristic for the diameter constrained minimum spanning tree problem. J Glob Optim 46:363–381

    Article  MathSciNet  Google Scholar 

  41. Magnanti TL, Wolsey LA (1995) Optimal trees. In: Monma CL, Ball MO, Magnanti TL, Nemhauser GL (eds) Network models. Volume 7 of handbooks in operations research and management science. Elsevier, Amsterda, pp 503–615

    Google Scholar 

  42. Martinez LC, da Cunha AS (2012) A parallel Lagrangian relaxation algorithm for the min-degree constrained minimum spanning tree problem. In: Mahjoub AR, Markakis V, Milis I, Paschos V (eds) Combinatorial optimization. Volume 7422 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 237–248

    Google Scholar 

  43. Noronha TF, Ribeiro CC, Santos AC (2010) Solving diameter-constrained minimum spanning tree problems by constraint programming. Int Trans Oper Res 17(5):653–665

    Article  MathSciNet  Google Scholar 

  44. Noronha TF, Santos AC, Ribeiro CC (2008) Constraint programming for the diameter constrained minimum spanning tree problem. Electron Notes Discrete Math 30:93–98

    Article  MathSciNet  Google Scholar 

  45. Prüfer H (1918) Neuer beweis eines satzes über permutationen. Archiv für Mathematik und Physik 27:141–144

    MATH  Google Scholar 

  46. Raidl GR, Julstrom BA (2003) Edge sets: an effective evolutionary coding of spanning trees. IEEE Trans Evol Comput 7(3):225–239

    Article  Google Scholar 

  47. Raidl GR, Julstrom BA (2003) Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem. In: Proceedings of the 18th ACM symposium on applied computing, Melbourne, pp 747–752

    Google Scholar 

  48. Ramos RM, Alonso S, Sicilia J, Gonzalez C (1998) The problem of the optimal biobjective spanning tree. Eur J Oper Res 111(3):617–628

    Article  Google Scholar 

  49. Requejo C, Santos E (2009) Greedy heuristics for the diameter-constrained minimum spanning tree problem. J Math Sci 161:930–943

    Article  MathSciNet  Google Scholar 

  50. Saha S, Kumar R (2011) Bounded-diameter MST instances with hybridization of multi-objective ea. Int J Comput Appl 18(4):17–25

    Google Scholar 

  51. Santos AC, Duhamel C, Belisário LS, Guedes LM (2012) Strategies for designing energy-efficient clusters-based WSN topologies. J Heuristics 18(4):657–675

    Article  Google Scholar 

  52. Santos AC, Lima DR, Aloise DJ (2014) Modeling and solving the bi-objective minimum diameter-cost spanning tree problem. J Glob Optim 60(2):195–216

    Article  MathSciNet  Google Scholar 

  53. Santos AC, Lucena A, Ribeiro CC (2004) Solving diameter constrained minimum spanning tree problem in dense graphs. Lect Notes Comput Sci 3059:458–467

    Article  Google Scholar 

  54. Shangin RE, Pardalos PM (2014) Heuristics for minimum spanning k-tree problem. Procedia Comput Sci 31(0):1074–1083

    Article  Google Scholar 

  55. Silva RMA, Silva DM, Resende MGC, Mateus GR, Gonçalves JF, Festa P (2014) An edge-swap heuristic for generating spanning trees with minimum number of branch vertices. Optim Lett 8(4):1225–1243

    Article  MathSciNet  Google Scholar 

  56. Sourd F, Spanjaard O (2008) A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J Comput 20(3):472–484

    Article  MathSciNet  Google Scholar 

  57. Souza MC, Martins P (2008) Skewed VNS enclosing second order algorithm for the degree constrained minimum spanning tree problem. Eur J Oper Res 191(3):677–690

    Article  Google Scholar 

  58. Steiner S, Radzik T (2008) Computing all efficient solutions of the biobjective minimum spanning tree problem. Comput Oper Res 35(1):198–211

    Article  MathSciNet  Google Scholar 

  59. Zhou G, Gen M (1999) Genetic algorithm approach on multi-criteria minimum spanning tree problem. Eur J Oper Res 114:141–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Cynthia Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Santos, A.C., Duhamel, C., Andrade, R. (2018). Trees and Forests. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_49

Download citation

Publish with us

Policies and ethics