Skip to main content

Comparison of 3D Texture-Based Image Descriptors in Fluorescence Microscopy

  • Conference paper
Combinatorial Image Analysis (IWCIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8466))

Included in the following conference series:

Abstract

In recent years, research groups pay even more attention on 3D images, especially in the field of biomedical image processing. Adding another dimension enables to capture the entire object. On the other hand, handling 3D images also requires new algorithms, since not all of them can be modified for higher dimensions intuitively. In this article, we introduce a comparison of various implementations of 3D texture descriptors presented in the literature in recent years. We prepared an unified environment to test all of them under the same conditions. From the results of our tests we came to conclusion, that 3D variants of LBP in the combination with k-NN classifier are a very strong approach with the classification accuracy more than 99% on selected group of 3D biomedical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, J., Moelker, A., Niessen, W.J., van Walsum, T.: 3D LBP-Based Rotationally Invariant Region Description. In: Park, J.-I., Kim, J. (eds.) ACCV 2012 Workshops, Part I. LNCS, vol. 7728, pp. 26–37. Springer, Heidelberg (2013)

    Google Scholar 

  2. Batko, M., Novak, D., Zezula, P.: MESSIF: Metric similarity search implementation framework. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 1–10. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of hela cells. Bioinformatics 17(12), 1213–1223 (2001)

    Article  Google Scholar 

  4. Chen, X., Velliste, M., Weinstein, S., Jarvik, J.W.: Location proteomics: building subcellular location trees from high-resolution 3D fluorescence microscope images of randomly tagged proteins. In: Storage and Retrieval for Image and Video Databases, vol. 4962, pp. 298–306 (2003)

    Google Scholar 

  5. Daněk, O., Matula, P., Maška, M., Kozubek, M.: Smooth Chan-Vese Segmentation via Graph Cuts. Pattern Recogn. Lett. 33(10), 1405–1410 (2012)

    Article  Google Scholar 

  6. Doshi, N.P., Schaefer, G.: A comprehensive benchmark of local binary pattern algorithms for texture retrieval. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2760–2763. IEEE (2012)

    Google Scholar 

  7. Erdos, P., Pach, J.: On a problem of on a problem of L. Fejes Tóth. Discrete Mathematics 30(2), 103–109 (1980)

    Article  MathSciNet  Google Scholar 

  8. Fehr, J., Burkhardt, H.: 3D rotation invariant local binary patterns. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)

    Google Scholar 

  9. Fehr, J.: Local Invariant Features for 3D Image Analysis: Dissertation. Suedwestdeutscher Verlag fuer Hochschulschriften, Germany (2009)

    Google Scholar 

  10. Flusser, J., Kautsky, J., Šroubek, F.: Implicit moment invariants. Int. J. Comput. Vision 86(1), 72–86 (2010)

    Article  Google Scholar 

  11. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biological Cybernetics 61(2), 103–113 (1989)

    Article  Google Scholar 

  12. Foggia, P., Percannella, G., Soda, P., Vento, M.: Early experiences in mitotic cells recognition on hep-2 slides. In: IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 38–43 (2010)

    Google Scholar 

  13. Hafiane, A., Seetharaman, G., Zavidovique, B.: Median Binary Pattern for Textures Classification. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 387–398. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. on Systems, Man and Cyber. SMC-3(6), 610–621 (1973)

    Article  Google Scholar 

  15. Hu, M.K.: Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory IT-8, 179–187 (1962)

    Google Scholar 

  16. Jaganathan, Y., Vennila, I.: Feature dimension reduction for efficient medical image retrieval system using unified framework. J. Comput. Sci. 9, 1472–1486 (2013)

    Article  Google Scholar 

  17. Kotoulas, L., Andreadis, I.: Image Analysis Using Moments. In: 5th Int. Conf. on Technology and Automation, pp. 360–364 (2005)

    Google Scholar 

  18. Lowe, D.: Object recognition from local scale-invariant features. In: The Proc. of the 7th IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  19. Majtner, T., Svoboda, D.: Extension of Tamura Texture Features for 3D Fluorescence Microscopy. In: Second Intern. Conf. on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 301–307 (2012)

    Google Scholar 

  20. Manjunath, B., Salembier, P., Sikora, T. (eds.): Introduction to MPEG-7: Multimedia Content Description Interface. Wiley & Sons, Inc., New York (2002)

    Google Scholar 

  21. Novotni, M., Klein, R.: Shape retrieval using 3D Zernike descriptors. Computer Aided Design 36, 1047–1062 (2004)

    Article  Google Scholar 

  22. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proc. of the 12th IAPR Intern. Conf. on Patt. Recog. - Conf. A: Computer Vision & Image Processing, vol. 1, pp. 582–585 (1994)

    Google Scholar 

  23. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  24. Orlov, N., Eckely, D.M., Shamir, L., Goldberg, I.G.: Machine vision for classifying biological and biomedical images. In: Visualization, Imaging, and Image Processing (VIIP 2008), pp. 192–196 (2008)

    Google Scholar 

  25. Paulhac, L., Makris, P., Ramel, J.-Y.: Comparison between 2D and 3D Local Binary Pattern Methods for Characterisation of Three-Dimensional Textures. In: Campilho, A., Kamel, M. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 670–679. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Rellier, G., Descombes, X., Falzon, F., Zerubia, J.: Texture feature analysis using a Gauss-Markov model in hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 42(7), 1543–1551 (2004)

    Article  Google Scholar 

  27. Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J.: Wndchrm – an open source utility for biological image analysis (2008)

    Google Scholar 

  28. Stoklasa, R., Majtner, T., Svoboda, D.: Efficient k-NN based HEp-2 cells classifier. Pattern Recognition (2013) (in press)

    Google Scholar 

  29. Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry A 75(6), 494–509 (2009)

    Article  Google Scholar 

  30. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Tran. on Systems, Man and Cyber. 8(6), 460–473 (1978)

    Article  Google Scholar 

  31. Tan, X., Triggs, B.: Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. IEEE Transactions on Image Processing 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  32. Teague, M.R.: Image analysis via the general theory of moments. Journal of the Optical Society of America (1917-1983) 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  33. Tesar, L., Smutek, D., Shimizu, A., Kobatake, H.: 3D extension of Haralick texture features for medical image analysis. In: Proceedings of the Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, SPPRA 2007, Anaheim, CA, USA, pp. 350–355. ACTA Press (2007)

    Google Scholar 

  34. Zhao, G., Pietikäinen, M.: Dynamic Texture Recognition Using Volume Local Binary Patterns. In: Vidal, R., Heyden, A., Ma, Y. (eds.) WDV 2005/2006. LNCS, vol. 4358, pp. 165–177. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  35. Zhao, G., Pietikainen, M.: Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Majtner, T., Svoboda, D. (2014). Comparison of 3D Texture-Based Image Descriptors in Fluorescence Microscopy. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07148-0_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07147-3

  • Online ISBN: 978-3-319-07148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics