Skip to main content

Long-Bone Fracture Detection in Digital X-ray Images Based on Concavity Index

  • Conference paper
Combinatorial Image Analysis (IWCIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8466))

Included in the following conference series:

  • 1007 Accesses

Abstract

Fracture detection is a crucial part in orthopedic X-ray image analysis. Automated fracture detection for the patients of remote areas is helpful to the paramedics for early diagnosis and to start an immediate medical care. In this paper, we propose a new technique of automated fracture detection for long-bone X-ray images based on digital geometry. The method can trace the bone contour in an X-ray image and can identify the fracture locations by utilizing a novel concept of concavity index of the contour. It further uses a new concept of relaxed digital straight line (RDSS) for restoring the false contour discontinuities that may arise due to segmentation or contouring error. The proposed method eliminates the shortcomings of earlier fracture detection approaches that are based on texture analysis or use training sets. Experiments with several digital X-ray images reveal encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandyopadhyay, O., Biswas, A., Chanda, B., Bhattacharya, B.B.: Bone contour tracing in digital X-ray images based on adaptive thresholding. In: Maji, P., Ghosh, A., Murty, M.N., Ghosh, K., Pal, S.K. (eds.) PReMI 2013. LNCS, vol. 8251, pp. 465–473. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bandyopadhyay, O., Chanda, B., Bhattacharya, B.B.: Entropy-based automatic segmentation of bones in digital X-ray images. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 122–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1590–1602 (2007)

    Google Scholar 

  4. Biswas, A., Khara, S., Bhowmik, P., Bhattacharya, B.B.: Extraction of region of interest from face images using cellular analysis. ACM Compute 2008, 1–8 (2008)

    Google Scholar 

  5. Chai, H.Y., Wee, L.K., Swee, T.T., Salleh, S.H., Ariff, A.K., Kamarulafizam: Gray-level co-occurrence matrix bone fracture detection. American Journal of Applied Sciences, 26–32 (2011)

    Google Scholar 

  6. Donnelley, M., Knowles, G.: Automated bone fracture detection. In: Proceedings of SPIE 5747, Medical Imaging: Image Processing, p. 955 (2005)

    Google Scholar 

  7. Donnelley, M., Knowles, G., Hearn, T.: A CAD system for long-bone segmentation and fracture detection. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 153–162. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Eksi, Z., Dandil, E., Cakiroglu, M.: Computer-aided bone fracture detection. In: Proceedings of Signal Processing and Communications Applications, pp. 1–4 (2012)

    Google Scholar 

  9. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electronic Computers, 260–268 (1961)

    Google Scholar 

  10. Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.N., Guy, P.: Automatic bone localization and fracture detection from volumetric ultrasound images using 3-d local phase features. Ultrasound Med. Biol. (1), 128–144 (2012)

    Google Scholar 

  11. Lum, V.L.F., Leow, W.K., Chen, Y.: Combining classifiers for bone fracture detection in X-ray images. In: IEEE International Congress on Image and Signal Processing, 1149–1152 (2005)

    Google Scholar 

  12. Materka, A., Cichy, P., Tuliszkiewicz, J.: Texture analysis of X-ray images for detection of changes in bone mass and structure. In: Texture Analysis in Machine Vision. p. 257, World Scientific (2000)

    Google Scholar 

  13. Muller, M.E., Nazarian, S., Koch, P., Schatzker, J.: The comprehensive classification of fractures of long bones. Springer (1990)

    Google Scholar 

  14. Ouyang, X., Majumdar, S., Link, T.M., Lu, Y., Augat, P., Lin, J., Newitt, D., Genant, H.K.: Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections. Medical Physics Research and Practice, 2037–2945 (1998)

    Google Scholar 

  15. Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers, 1264–1269 (1974)

    Google Scholar 

  16. Tian, T.-P., Chen, Y., Leow, W.-K., Hsu, W., Howe, T.S., Png, M.A.: Computing neck-shaft angle of femur for X-ray fracture detection. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 82–89. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Wei, Z., Liming, Z.: Study on recognition of the fracture injure site based on X-ray images. In: IEEE International Congress on Image and Signal Processing, pp. 1947–1950 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bandyopadhyay, O., Biswas, A., Bhattacharya, B.B. (2014). Long-Bone Fracture Detection in Digital X-ray Images Based on Concavity Index. In: Barneva, R.P., Brimkov, V.E., Å lapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07148-0_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07147-3

  • Online ISBN: 978-3-319-07148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics