Abstract
Fracture detection is a crucial part in orthopedic X-ray image analysis. Automated fracture detection for the patients of remote areas is helpful to the paramedics for early diagnosis and to start an immediate medical care. In this paper, we propose a new technique of automated fracture detection for long-bone X-ray images based on digital geometry. The method can trace the bone contour in an X-ray image and can identify the fracture locations by utilizing a novel concept of concavity index of the contour. It further uses a new concept of relaxed digital straight line (RDSS) for restoring the false contour discontinuities that may arise due to segmentation or contouring error. The proposed method eliminates the shortcomings of earlier fracture detection approaches that are based on texture analysis or use training sets. Experiments with several digital X-ray images reveal encouraging results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bandyopadhyay, O., Biswas, A., Chanda, B., Bhattacharya, B.B.: Bone contour tracing in digital X-ray images based on adaptive thresholding. In: Maji, P., Ghosh, A., Murty, M.N., Ghosh, K., Pal, S.K. (eds.) PReMI 2013. LNCS, vol. 8251, pp. 465–473. Springer, Heidelberg (2013)
Bandyopadhyay, O., Chanda, B., Bhattacharya, B.B.: Entropy-based automatic segmentation of bones in digital X-ray images. In: Kuznetsov, S.O., Mandal, D.P., Kundu, M.K., Pal, S.K. (eds.) PReMI 2011. LNCS, vol. 6744, pp. 122–129. Springer, Heidelberg (2011)
Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1590–1602 (2007)
Biswas, A., Khara, S., Bhowmik, P., Bhattacharya, B.B.: Extraction of region of interest from face images using cellular analysis. ACM Compute 2008, 1–8 (2008)
Chai, H.Y., Wee, L.K., Swee, T.T., Salleh, S.H., Ariff, A.K., Kamarulafizam: Gray-level co-occurrence matrix bone fracture detection. American Journal of Applied Sciences, 26–32 (2011)
Donnelley, M., Knowles, G.: Automated bone fracture detection. In: Proceedings of SPIE 5747, Medical Imaging: Image Processing, p. 955 (2005)
Donnelley, M., Knowles, G., Hearn, T.: A CAD system for long-bone segmentation and fracture detection. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008 2008. LNCS, vol. 5099, pp. 153–162. Springer, Heidelberg (2008)
Eksi, Z., Dandil, E., Cakiroglu, M.: Computer-aided bone fracture detection. In: Proceedings of Signal Processing and Communications Applications, pp. 1–4 (2012)
Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electronic Computers, 260–268 (1961)
Hacihaliloglu, I., Abugharbieh, R., Hodgson, A.J., Rohling, R.N., Guy, P.: Automatic bone localization and fracture detection from volumetric ultrasound images using 3-d local phase features. Ultrasound Med. Biol. (1), 128–144 (2012)
Lum, V.L.F., Leow, W.K., Chen, Y.: Combining classifiers for bone fracture detection in X-ray images. In: IEEE International Congress on Image and Signal Processing, 1149–1152 (2005)
Materka, A., Cichy, P., Tuliszkiewicz, J.: Texture analysis of X-ray images for detection of changes in bone mass and structure. In: Texture Analysis in Machine Vision. p. 257, World Scientific (2000)
Muller, M.E., Nazarian, S., Koch, P., Schatzker, J.: The comprehensive classification of fractures of long bones. Springer (1990)
Ouyang, X., Majumdar, S., Link, T.M., Lu, Y., Augat, P., Lin, J., Newitt, D., Genant, H.K.: Morphometric texture analysis of spinal trabecular bone structure assessed using orthogonal radiographic projections. Medical Physics Research and Practice, 2037–2945 (1998)
Rosenfeld, A.: Digital straight line segments. IEEE Transactions on Computers, 1264–1269 (1974)
Tian, T.-P., Chen, Y., Leow, W.-K., Hsu, W., Howe, T.S., Png, M.A.: Computing neck-shaft angle of femur for X-ray fracture detection. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 82–89. Springer, Heidelberg (2003)
Wei, Z., Liming, Z.: Study on recognition of the fracture injure site based on X-ray images. In: IEEE International Congress on Image and Signal Processing, pp. 1947–1950 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bandyopadhyay, O., Biswas, A., Bhattacharya, B.B. (2014). Long-Bone Fracture Detection in Digital X-ray Images Based on Concavity Index. In: Barneva, R.P., Brimkov, V.E., Å lapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-07148-0_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07147-3
Online ISBN: 978-3-319-07148-0
eBook Packages: Computer ScienceComputer Science (R0)