Skip to main content

On Intersection Graphs of Convex Polygons

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8466))

Abstract

Since an image can easily be modeled by its adjacency graph, graph theory and algorithms on graphs are widely used in image processing. Of particular interest are the problems of estimating the number of the maximal cliques in a graph and designing algorithms for their computation, since these are found relevant to various applications in image processing and computer graphics. In the present paper we study the maximal clique problem on intersection graphs of convex polygons, which are also applicable to imaging sciences. We present results which refine or improve some of the results recently proposed in [18]. Thus, it was shown therein that an intersection graph of n convex polygons whose sides are parallel to k different directions has no more than n 2k maximal cliques. Here we prove that the number of maximal cliques does not exceed n k. Moreover, we show that this bound is tight for any fixed k. Algorithmic aspects are discussed as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambühl, C., Wagner, U.: The clique problem in intersection graphs of ellipses and triangles. Theory Comput. Syst. 38, 279–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ballard, D.H., Brown, M.: Computer Vision. Prentice-Hall, Englewood Cliffs (1982)

    Google Scholar 

  3. Brimkov, V.E., Kafer, S., Szczepankiewicz, M., Terhaar, J.: Maximal cliques in intersection graphs of quasi-homothetic trapezoids. In: Proc. MCURCSM 2013, Ohio, 10 p. (2013)

    Google Scholar 

  4. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 241–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Čulík, K.: Applications of graph theory to mathematical logic and linguistics. In: Proc. Sympos. “Theory of Graphs and its Applications” (Smolenice, 1963), pp. 13–20. Publ. House Czechoslovak Acad. Sci., Prague (1964)

    Google Scholar 

  6. Erdős, P, Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Canad. J. Math. 18, 106–112 (1966)

    Google Scholar 

  7. Evako, A.V.: Topological properties of the intersection graph of covers of n-dimensional surfaces. Discrete Mathematics 147(1-3), 107–120 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geometry and algorithms. Discrete Applied Mathematics 74, 13–32 (1993)

    Article  Google Scholar 

  9. Fish, A., Stapleton, G.: Formal issues in languages based on closed curves. In: Proc. Distributed Multimedia Systems, pp. 161–167 (2006)

    Google Scholar 

  10. Gardiner, E.J., Artymiuk, P.J., Willett, P.: Clique-detection algorithms for matching three-dimensional molecular structures. J. Molecular Graph Modelling 15(4), 245–253 (1997)

    Article  Google Scholar 

  11. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Acad. Press (1980)

    Google Scholar 

  12. Heinzle, F., Ander, K.H., Sester, M.: Graph based approaches for recognition of patterns and implicit information in road networks. In: Proc. 22nd International Cartographic Conference, A Coruna (2005)

    Google Scholar 

  13. Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. Journal of Algorithms 4, 300–323 (1983)

    Article  MathSciNet  Google Scholar 

  14. Ion, A., Carreira, J., Sminchisescu, C.: Image segmentation by figure-ground composition into maximal cliques. In: Proc. 13th International Conference on Computer Vision, Barcelona, pp. 2110–2117 (2011)

    Google Scholar 

  15. Jacobson, M.S., Morris, F.R., Scheinermann, E.R.: General results on tolerance intersection graphs. J. Graph Theory 15, 573–577 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27, 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  18. Junosza-Szaniawski, K., Kratochvíl, J., Pergel, M., Rzążewski, P.: Beyond homothetic polygons: Recognition and maximum clique. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 619–628. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Kaufmann, M., Kratochvíl, J., Lehmann, K., Subramanian, A.: Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition. In: Proc. SODA 2006, pp. 832–841 (2006)

    Google Scholar 

  20. Kratochvíl, J., Kuběna, A.: On intersection representations of co-planar graphs. Discrete Mathematics 178, 251–255 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Combinatorial Theory Ser. B 62, 289–315 (1994)

    Article  MATH  Google Scholar 

  22. Kratochvíl, J., Nešetřil, J.: Independent set and clique problems in intersection-defined classes of graphs. Comm. Math. Uni. Car. 31, 85–93 (1990)

    MATH  Google Scholar 

  23. Kratochvíl, J., Pergel, M.: Intersection graphs of homothetic polygons. Electronic Notes in Discr. Math. 31, 277–280 (2008)

    Article  Google Scholar 

  24. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications, vol. 2. SIAM, Philadelphia (1999)

    Google Scholar 

  25. Szpilrajn-Marczewski, E.: Sur deux propriétés des classes d’ensembles. Fund. Math. 33, 303–307 (1945)

    MATH  MathSciNet  Google Scholar 

  26. Nakamura, H., Masatake, H., Mamoru, H.: Robust computation of intersection graph between two solids. Graphical Models 16(3), C79–C88 (1997)

    Google Scholar 

  27. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers Math. Applic. 29(8), 45–61 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Paget, R., Longsta, D.: Extracting the cliques from a neighbourhood system. IEE Proc. Vision Image and Signal Processing 144(3), 168–170 (1997)

    Article  Google Scholar 

  29. Simonetto, P., Auber, D.: An heuristic for the construction of intersection graphs. In: Proc. 13th International Conference on Information Visualisation, pp. 673–678 (2009)

    Google Scholar 

  30. Simonetto, P., Auber, D.: Visualise undrawable Euler diagrams. In: Proc. 12th IEEE International Conference on Information Visualisation, pp. 594–599 (2008)

    Google Scholar 

  31. Tian, J., Tinghua, A., Xiaobin, J.: Graph based recognition of grid pattern in street networks. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Advances in Spatial Data Handling and GIS. Lecture Notes in Geoinformation and Cartography, Part II, vol. 38, pp. 129–143 (2012)

    Google Scholar 

  32. Vairinhos, V.M., Lobo, V., Galindo, M.P.: Intersection graph-based representation of contingency tables, http://www.isegi.unl.pt/docentes/vlobo/Publicacoes/3_17_lobo08_DAIG_conting_tables.pdf

  33. Müller, T., van Leeuven, E.J., van Leeuven, J.: Integer representations of convex polygons intersection graphs. In: Symposium on Computational Geometry, pp. 300–307 (2011)

    Google Scholar 

  34. van Leeuwen, E.J., van Leeuwen, J.: Convex polygon intersection graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 377–388. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  35. Verroust, A., Viaud, M.-L.: Ensuring the drawability of extended euler diagrams for up to 8 sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 128–141. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  36. Wang, X., Bai, X., Yang, X., Wenyu, L., Latecki, L.J.: Maximal cliques that satisfy hard constraints with application to deformable object model learning. In: Advances in Neural Information Processing Systems, vol. 24, pp. 864–872 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brimkov, V.E., Kafer, S., Szczepankiewicz, M., Terhaar, J. (2014). On Intersection Graphs of Convex Polygons. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07148-0_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07147-3

  • Online ISBN: 978-3-319-07148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics