Skip to main content

An Improved Adaptive Self-Organizing Map

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Abstract

We propose a novel adaptive Self-Organizing Map (SOM). In the introduced approach, the SOM neurons’ neighborhood widths are computed adaptively using the information about the frequencies of occurrences of input patterns in the input space. The neighborhood widths are determined differently for each neuron in the SOM grid. In this way, the proposed SOM properly visualizes the input data, especially, when there are significant differences in frequencies of occurrences of input patterns. The experimental study on real data, on three different datasets, confirms the effectiveness of the proposed adaptive SOM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001)

    Google Scholar 

  2. Rauber, A., Merkl, D., Dittenbach, M.: The Growing Hierarchical Self-Organizing Map: Exploratory Analysis of High-Dimensional Data. IEEE Transactions on Neural Networks 13(6), 1331–1341 (2002)

    Article  Google Scholar 

  3. Olszewski, D., Kacprzyk, J., Zadrożny, S.: Time Series Visualization Using Asymmetric Self-Organizing Map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 40–49. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Olszewski, D.: An Experimental Study on Asymmetric Self-Organizing Map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Płoński, P., Zaremba, K.: Self-Organising Maps for Classification with Metropolis-Hastings Algorithm for Supervision. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 149–156. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Ippoliti, D., Zhou, X.: A-GHSOM: An Adaptive Growing Hierarchical Self Organizing Map for Network Anomaly Detection. Journal of Parallel and Distributed Computing 72(12), 1576–1590 (2012)

    Article  Google Scholar 

  7. Tucci, M., Raugi, M.: A Filter Based Neuron Model for Adaptive Incremental Learning of Self-Organizing Maps. Neurocomputing 74(11), 1815–1822 (2011)

    Article  Google Scholar 

  8. Shah-Hosseini, H.: Binary Tree Time Adaptive Self-Organizing Map. Neurocomputing 74(11), 1823–1839 (2011)

    Article  Google Scholar 

  9. Shah-Hosseini, H., Safabakhsh, R.: TASOM: A New Time Adaptive Self-Organizing Map. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33(2), 271–282 (2003)

    Article  Google Scholar 

  10. Ressom, H., Wang, D., Natarajan, P.: Adaptive Double Self-Organizing Maps for Clustering Gene Expression Profiles. Neural Networks 16(5-6), 633–640 (2003)

    Article  Google Scholar 

  11. Mulier, F., Cherkassky, V.: Self-Organization as an Iterative Kernel Smoothing Process. Neural Computation 7(6), 1165–1177 (1995)

    Article  Google Scholar 

  12. Heskes, T.: Self-Organizing Maps, Vector Quantization, and Mixture Modeling. IEEE Transactions on Neural Networks 12(6), 1299–1305 (2001)

    Article  Google Scholar 

  13. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000), Circulation Electronic Pages, http://circ.ahajournals.org/cgi/content/full/101/23/e215

  14. Olszewski, D.: Asymmetric k-Means Algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Olszewski, D.: k-Means Clustering of Asymmetric Data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 243–254. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Olszewski, D. (2014). An Improved Adaptive Self-Organizing Map. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics