Skip to main content

Fuzzy Reinforcement Learning for Dynamic Power Control in Cognitive Radio Networks

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Included in the following conference series:

  • 2372 Accesses

Abstract

Intelligent and flexible spectrum access procedures and resource allocation methods are needed to build cognitive radio (CR) networks. Apart from the major objective to maximise spectra efficiency, the goal of the CR network design is to rationalise the distribution of radio resources and the cost of their usage. This paper proposes a new fuzzy reinforcement learning method that allows for learning the best transmit power control strategy that in turn enables cognitive secondary users to achieve its required transmission rate and quality whilst minimising interference. An example is presented to illustrate the performance and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsarhan, A., Agrawal, A.: Spectrum Sharing in Multi-service Cognitive Using Reinforcement Learning. In: First UK India International Workshop on Cognitive Wireless Systems, UKIWCWS (2009)

    Google Scholar 

  2. Beon, H.R., Chen, H.S.: A Sensor-based Navigation for a Mobile Robot Using Fuzzy-Logic and Reinforcement Learning. IEEE Trans. on Systems, Man, and Cybernetics 25(3), 467–477 (1995)

    Google Scholar 

  3. Berenji, H.R., Vengerov, D.: Advantages of Cooperation Between Reinforcement Learning Agent in Difficult Stochastic Problems. In: Proceedings of the Ninth IEEE International Conference on Fuzzy Systems, San Antonio, TX, pp. 871–876 (2000)

    Google Scholar 

  4. Federal Communications Commission, Spectrum Policy Task Force Report, FCC 02 -155 (2002)

    Google Scholar 

  5. Foschini, G.J., Miljanic, Z.: A Simple Distributed Autonomous Power Control Algorithm and Its Convergence. IEEE Trans. Veh. Tech. 42(2), 641–646 (1993)

    Article  Google Scholar 

  6. Gao, S., Qian, L., Vaman, D.R.: Distributed Energy Efficient Spectrum Access in Wireless Cognitive Radio Sensor Networks. In: IEEE Wireless Communications and Networking Conf. (WCNC), Las Vegas, NV (2008)

    Google Scholar 

  7. Gatsis, N., Marques, A.G., Giannakis, G.B.: Utility-based Power Control for Peer-to-Peer Cognitive Radio Networks with Heterogeneous QoS Constraints. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV (2008)

    Google Scholar 

  8. Haykin, S.: Cognitive Radio: Brain-empowered Wireless Communications. IEEE Journal on Selected Areas in Communications 23(2), 201–220 (2005)

    Article  Google Scholar 

  9. Hoang, A., Liang, Y.: Downlink Channel Assignment and Power Control for Cognitive Radio Networks. IEEE Trans. on Wireless Communications 7(8), 3106–3117 (2008)

    Article  Google Scholar 

  10. Joó, L., Kóczy, L.T., Tikk, D., Varlaki, P.: On a Stable Interpretation Method. In: Proceedings of the 7th International Fuzzy System Association World Congress, Prague, Czech Republic, pp. 133–137 (1997)

    Google Scholar 

  11. Le, H.-S.T., Liang, Q.: An Efficient Power Control Scheme for Cognitive Radios. In: Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp. 2559–2563 (2007)

    Google Scholar 

  12. Le, H.-S.T., Ly, H.D.: Opportunistic Spectrum Access Using Fuzzy Logic for Cognitive Radio Networks. In: Proc. Second Int. Conf. on Electronics (ICCE), pp. 240–245 (2008)

    Google Scholar 

  13. Matinmikko, M., Rauma, T., Mustonen, M., Harjula, I., Sarvanko, H., Mämmela, A.: Application of Fuzzy Logic to Cognitive Radio Systems. IEICE Trans. on Comm. E92-B(12), 3572–3580 (2009)

    Article  Google Scholar 

  14. Mitola III, J.: Cognitive Radio for Flexible Mobile Multimedia Conference, San Diego, CA, pp. 3–10 (1999)

    Google Scholar 

  15. Wang, X., Zhu, Q.: Power Control for Cognitive Radio Base on Game Theory. In: Int. Conf. on Wireless Communications, China (2007)

    Google Scholar 

  16. Watkins, C.J.C.H.: Learning from Delayed Rewards, Ph. D. thesis King’s College, Cambridge (1989)

    Google Scholar 

  17. Watkins, C.J.C.H., Dayan, P.: Technical Note: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Martyna, J. (2014). Fuzzy Reinforcement Learning for Dynamic Power Control in Cognitive Radio Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics