Abstract
The subject of this article is 3D action recognition in point cloud sequences. A popular approach to classification of point clouds is the Bag-of-Words method, which classifies histograms of spatial features (as described e.g. by Toldo et al. in “The bag of words approach for retrieval and categorization of 3D objects”, 2010). This approach is, however, less effective when applied to action recognition of similar agents (e.g. humans). We will compare a simple HMM-based classifier with the well known Bag-of-Words scheme method, within sensible parameters for 3D point clouds close range acquisition methods. We then show that the dynamic classifier performs better when applied to action recognition of objects of the same type.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Johnson, A., Martial, H.: Using spin-images for efficient object recognition in cluttered 3-d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)
Wu, C.C., Lin, S.F.: Efficient model detection in point cloud data based on bag of words classification. Journal of Computational Information Systems 7(12), 4170–4177 (2011)
Li, X., Godil, A., Wagan, A.: Spatially enhanced bags of words for 3d shape retrieval. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 349–358. Springer, Heidelberg (2008)
Toldo, R., Castellani, U., Fusiello, A.: The bag of words approach for retrieval and categorization of 3d objects. Vis. Comput. 26(10), 1257–1268 (2010)
Steinhauser, D., Ruepp, O., Burschka, D.: Motion segmentation and scene classification from 3d lidar data. In: Proceeding of IEEE Intelligent Vehicles Symposium, pp. 398–403 (2008)
Xu, L., Mordohai, P.: Automatic facial expression recognition using bags of motion words. In: Proceeding of British Machine Vision Conference (2010)
Romaszewski, M., Głomb, P.: 3D mesh approximation using vector quantization. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 71–78. Springer, Heidelberg (2009)
Zhang, Z., Wang, Y.: Automatic object classification using motion blob based local feature fusion for traffic scene surveillance. Frontiers of Computer Science 6(5)
Grunewalder, S., Broekhuis, F., Macdonald, D., Wilson, A., McNutt, J., Shawe-Taylor, J., Hailes, S.: Movement activity based classification of animal behaviour with an application to data from cheetah (acinonyx jubatus). PLoS ONE 7(11), e49120 (2012)
Li, X., Fukui, K.: View-invariant human action recognition based on factorization and hmms. In: Proceeding of IAPR Conference on Machine Vision Applications, pp. 2207–2230 (2007)
Jin, Y., Prabhakaran, B.: Semantic quantization of 3d human motion capture data through spatial-temporal feature extraction. In: Satoh, S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 318–328. Springer, Heidelberg (2008)
Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segmenting motion capture data into distinct behaviors. In: Proceedings of Graphics Interface, GI 2004, pp. 185–194. Canadian Human-Computer Communications Society (2004)
Wei, Y., Hinz, S., Stilla, U.: 3D object-based classification for vehicle extraction from airborne lidar data by combining point shape information with spatial edge. In: Workshop on Pattern Recognition in Remote Sensing (PRRS), 2010 IAPR, pp. 1–4 (2010)
Wei, Y., Stilla, U.: Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis. Geoscience and Remote Sensing Letters 8(4), 607–611 (2011)
Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)
Sumner, R., Popovic, J.: Mesh data from deformation transfer for triangle meshes
Vlasic, D., Baran, I., Matusik, W., Popovic, J.: Articulated mesh animation from multi-view silhouettes
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cholewa, M., Sporysz, P. (2014). Classification of Dynamic Sequences of 3D Point Clouds. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-07173-2_57
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07172-5
Online ISBN: 978-3-319-07173-2
eBook Packages: Computer ScienceComputer Science (R0)