Skip to main content

Classification of Dynamic Sequences of 3D Point Clouds

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Included in the following conference series:

  • 2477 Accesses

Abstract

The subject of this article is 3D action recognition in point cloud sequences. A popular approach to classification of point clouds is the Bag-of-Words method, which classifies histograms of spatial features (as described e.g. by Toldo et al. in “The bag of words approach for retrieval and categorization of 3D objects”, 2010). This approach is, however, less effective when applied to action recognition of similar agents (e.g. humans). We will compare a simple HMM-based classifier with the well known Bag-of-Words scheme method, within sensible parameters for 3D point clouds close range acquisition methods. We then show that the dynamic classifier performs better when applied to action recognition of objects of the same type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johnson, A., Martial, H.: Using spin-images for efficient object recognition in cluttered 3-d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)

    Article  Google Scholar 

  2. Wu, C.C., Lin, S.F.: Efficient model detection in point cloud data based on bag of words classification. Journal of Computational Information Systems 7(12), 4170–4177 (2011)

    Google Scholar 

  3. Li, X., Godil, A., Wagan, A.: Spatially enhanced bags of words for 3d shape retrieval. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 349–358. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Toldo, R., Castellani, U., Fusiello, A.: The bag of words approach for retrieval and categorization of 3d objects. Vis. Comput. 26(10), 1257–1268 (2010)

    Article  Google Scholar 

  5. Steinhauser, D., Ruepp, O., Burschka, D.: Motion segmentation and scene classification from 3d lidar data. In: Proceeding of IEEE Intelligent Vehicles Symposium, pp. 398–403 (2008)

    Google Scholar 

  6. Xu, L., Mordohai, P.: Automatic facial expression recognition using bags of motion words. In: Proceeding of British Machine Vision Conference (2010)

    Google Scholar 

  7. Romaszewski, M., Głomb, P.: 3D mesh approximation using vector quantization. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 71–78. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Zhang, Z., Wang, Y.: Automatic object classification using motion blob based local feature fusion for traffic scene surveillance. Frontiers of Computer Science 6(5)

    Google Scholar 

  9. Grunewalder, S., Broekhuis, F., Macdonald, D., Wilson, A., McNutt, J., Shawe-Taylor, J., Hailes, S.: Movement activity based classification of animal behaviour with an application to data from cheetah (acinonyx jubatus). PLoS ONE 7(11), e49120 (2012)

    Google Scholar 

  10. Li, X., Fukui, K.: View-invariant human action recognition based on factorization and hmms. In: Proceeding of IAPR Conference on Machine Vision Applications, pp. 2207–2230 (2007)

    Google Scholar 

  11. Jin, Y., Prabhakaran, B.: Semantic quantization of 3d human motion capture data through spatial-temporal feature extraction. In: Satoh, S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 318–328. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.: Segmenting motion capture data into distinct behaviors. In: Proceedings of Graphics Interface, GI 2004, pp. 185–194. Canadian Human-Computer Communications Society (2004)

    Google Scholar 

  13. Wei, Y., Hinz, S., Stilla, U.: 3D object-based classification for vehicle extraction from airborne lidar data by combining point shape information with spatial edge. In: Workshop on Pattern Recognition in Remote Sensing (PRRS), 2010 IAPR, pp. 1–4 (2010)

    Google Scholar 

  14. Wei, Y., Stilla, U.: Comparison of two methods for vehicle extraction from airborne lidar data toward motion analysis. Geoscience and Remote Sensing Letters 8(4), 607–611 (2011)

    Article  Google Scholar 

  15. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  16. Sumner, R., Popovic, J.: Mesh data from deformation transfer for triangle meshes

    Google Scholar 

  17. Vlasic, D., Baran, I., Matusik, W., Popovic, J.: Articulated mesh animation from multi-view silhouettes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cholewa, M., Sporysz, P. (2014). Classification of Dynamic Sequences of 3D Point Clouds. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_57

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics