Skip to main content

Fuzzy and Neural Rotor Resistance Estimator for Vector Controlled Induction Motor Drives

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8468))

Included in the following conference series:

Abstract

This paper contributes to improving the dynamic performance of indirect vector controlled induction motor drives. This command requires the rotor resistance; the variation of this parameter could distort the decoupling between the flux and torque and, consequently, lead to deterioration of performance. To overcome this problem two intelligent approaches have been introduced to estimate the rotor resistance namely fuzzy logic and artificial neural networks. These estimators process the information from the rotational speed, the stator currents and voltages. The performances of the two intelligent approaches are investigated and compared in simulation. The results show that the neural rotor resistance estimator is reliable and highly effective in the resistance identification relative to fuzzy rotor resistance estimator of induction motor drives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leonhard, W.: Control of Electrical Drives. Springer (1996)

    Google Scholar 

  2. Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of Electric Machinery and Drive Systems. Wiley Interscience, John Wiley & Sons, NY (2002)

    Google Scholar 

  3. Blaschke, F.: The Principle of Field Orientation as Applied to the New Transvector Closed-Loop Control System for Rotating Field Machines. Siemens Review 34(5), 217–223 (1972)

    Google Scholar 

  4. Hasse, K.: On the Dynamics of Speed Control of a Static AC Drive with a Squirrel-Cage Induction Machine. Dissertation for the Doctoral Degree, Darmstadt (1969)

    Google Scholar 

  5. Hadj Saïd, S., Mimouni, M.F., M’Sahli, F., Farza, M.: High Gain Observer Based On-Line Rotor and Stator Resistances Estimation for IMs. Simulation Modelling Practice and Theory 19, 1518–1529 (2011)

    Article  Google Scholar 

  6. Bartolini, G., Pisano, A., Pisu, P.: Simplified Exponentially Convergent Rotor Resistance Estimation for Induction Motors. IEEE Transactions on Automatic Control 48(2), 325–330 (2003)

    Article  MathSciNet  Google Scholar 

  7. Kojabadi, H.M.: Active Power and MRAS Based Rotor Resistance Identification of an IM Drive. Simul. Modell. Practice Theory 17(2), 376–389 (2009)

    Article  Google Scholar 

  8. Abbasian, T., Salmasi, F.R., Yazdanpanah, M.J.: Improved Adaptive Feedback Linearization Control of Induction Motors Based on Online Estimation of Core Loss and Rotor Resistance. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2006, Taormina-Sicily, Italy, pp. S32/22–S32/27 (2006)

    Google Scholar 

  9. Toliyat, H.A., Levi, E., Raina, M.: A Review of RFO Induction Motor Parameter Estimation Techniques. IEEE Trans. Energy Convers 18(2), 271–283 (2003)

    Article  Google Scholar 

  10. Toliyat, H.A., Wlas, M., Krzemiriski, Z.: Neural-Network-Based Parameter Estimations of Induction Motors. IEEE Transactions on Industrial Electronics 55(4), 1783–1794 (2008)

    Article  Google Scholar 

  11. Zidani, F., Nait-Said, M.S., Benbouzid, M.E.H., Diallo, D., Abdessemed, R.: A Fuzzy Rotor Resistance Updating Scheme for an IFOC Induction Motor Drive. IEEE Power Engineering Review 21(11), 47–50 (2001)

    Article  Google Scholar 

  12. Zadeh, L.A.: Fuzzy Logic. IEEE Computer Magazine 1(4), 83–92 (1988)

    Article  MathSciNet  Google Scholar 

  13. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zimmermann, H.J.: Fuzzy Sets, Decision Marking, and Expert Systems, Boston, Dordrecht, Lancaster (1987)

    Google Scholar 

  15. Chen, S.-M.A.: Fuzzy Approach for Rule-Based Systems Based on Fuzzy Logics. IEEE Trans. Syst. Man and Cybernetics 26(5), 769–778 (1996)

    Article  Google Scholar 

  16. Livingstone, D.J.: Artificial Neural Networks: Methods and Applications. Humana Press Inc. (2009)

    Google Scholar 

  17. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Douiri, M.R., Belghazi, O., Cherkaoui, M. (2014). Fuzzy and Neural Rotor Resistance Estimator for Vector Controlled Induction Motor Drives. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07176-3_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07175-6

  • Online ISBN: 978-3-319-07176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics