Skip to main content

A New Algorithm for Identification of Significant Operating Points Using Swarm Intelligence

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8468))

Included in the following conference series:

Abstract

The paper presents a novel algorithm for identification of significant operating points from non-invasive identification of nonlinear dynamic objects. In the proposed algorithm to identify the unknown parameters of nonlinear dynamic objects in different significant operating points, swarm intelligence supported by a genetic algorithm is used for optimization in continuous domain. Moreover, we propose a new weighted approximation error measure which eliminates the problem of the measurements obtained from non-significant areas. This measure significantly accelerates the process of the parameters identification in comparison with the same algorithm without weights. Performed simulations prove efficiency of the novel algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: A New Method for Dealing with Unbalanced Linguistic Term Set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 207–212. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid State Variables-Fuzzy Logic Modelling of Nonlinear Objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 227–234. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bilski, J., Litwiński, S., Smoląg, J.: Parallel Realization of QR Algorithm for Neural Networks Learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bilski, J., Rutkowski, L.: Numerically Robust Learning Algorithms for Feed Forward Neural Networks. Advances in Soft Computing - Neural Networks and Soft Computing, pp. 149–154. Physica-Verlag, A Springer-Verlag Company (2003)

    Google Scholar 

  5. Bilski, J., Smoląg, J.: Parallel Approach to Learning of the Recurrent Jordan Neural Network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 32–40. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bilski, J., Smoląg, J.: Parallel Realisation of the Recurrent Elman Neural Network Learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Bilski, J., Smoląg, J.: Parallel Realisation of the Recurrent Multi Layer Perceptron Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 12–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Bilski, J., Smoląg, J.: Parallel Realisation of the Recurrent RTRN Neural Network Learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Bin, W., Yi, Z., Shaohui, L., Zhongzhi, S.: CSIM: A Document Clustering Algorithm Based on Swarm Intelligence Evolutionary Computation. In: CEC 2002, vol. 1, pp. 477–482 (2002)

    Google Scholar 

  10. Cpalka, K.: A Method for Designing Flexible Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. In: Nonlinear Analysis Series A: Theory, Methods and Applications, vol. 71, pp. 1659–1672. Elsevier (2009)

    Google Scholar 

  12. Cpałka, K., Łapa, K., Przybył , A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing (in print, 2014), http://dx.doi.org/10.1016/j.neucom.2013.12.031

  13. Cpałka, K., Rutkowski, L.: A New Method for Designing and Reduction of Neuro-fuzzy Systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)

    Google Scholar 

  14. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Fuzzy Systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  15. Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno Neuro-fuzzy Structures for Nonlinear Approximation. WSEAS Transactions on Systems 9(4), 1450–1458 (2005)

    Google Scholar 

  16. Montes de Oca, M.A., Stt̆zle, T., Birattari, M., Dorigo, M.: Frankenstein’s PSO: A Composite Particle Swarm Optimization Algorithm. Trans. Evol. Comp. 13(5), 1120–1132 (2009)

    Google Scholar 

  17. Dorigo, M., Birattari, M., Stt̆zle, T.: Ant Colony Optimization Artificial Ants as a Computational Intelligence Technique. IEEE Computational Intelligence Magazine, 28–39 (2006)

    Google Scholar 

  18. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  19. Dziwiński, P., Bartczuk, Ł., Starczewski, J.T.: Fully Controllable Ant Colony System for Text Data Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 199–205. Springer, Heidelberg (2012)

    Google Scholar 

  20. Dziwiñski, P., Rutkowska, D.: Algorithm for Generating Fuzzy Rules for WWW Document Classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Dziwiński, P., Rutkowska, D.: Ant Focused Crawling Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1018–1028. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Dziwiński, P., Starczewski, J.T., Bartczuk, Ł.: New Linguistic Hedges in Construction of Interval Type-2 FLS. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 445–450. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Eennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE Internatiolal Conference on Neural Networsk, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  24. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics 19(1), 43–53 (2005)

    Article  Google Scholar 

  25. El-Abd, M.: On the hybridization on the artificial bee colony and particle swarm optimization algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(2), 147–155 (2012)

    MathSciNet  Google Scholar 

  26. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  27. Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object Detection by Simple Fuzzy Classifiers Generated by Boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 540–547. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Gabryel, M., Woźniak, M., K. Nowicki, R.: Creating Learning Sets for Control Systems Using an Evolutionary Method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 206–213. Springer, Heidelberg (2012)

    Google Scholar 

  29. Greenfield, S., Chiclana, F.: Type-reduction of the discretized interval type-2 fuzzy set: approaching the continuous case through progressively finer discretization. Journal of Artificial Intelligence and Soft Computing Research 1(3), 183–193 (2011)

    Google Scholar 

  30. Korytkowski, M., Rutkowski, L., Scherer, R.: On combining backpropagation with boosting. In: Proceedings of the IEEE International Joint Conference on Neural Network (IJCNN), vol. 1-10, pp. 1274–1277 (2006)

    Google Scholar 

  31. Kroll, A.: On choosing the fuzziness parameter for identifying TS models with multidimensional membership functions. Journal of Artificial Intelligence and Soft Computing Research 1(4), 283–300 (2011)

    Google Scholar 

  32. Laskowski, L.: A Novel Continuous Dual Mode Neural Network in Stereo-Matching Process. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 294–297. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Laskowski, Ł.: Hybrid-Maximum Neural Network for Depth Analysis from Stereo-Image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 47–55. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Lobato, F.S., Steffen Jr., V.: A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy. Journal of Artificial Intelligence and Soft Computing Research 1(4), 259–267 (2011)

    Google Scholar 

  35. Lobato, F.S., Steffen Jr., V., Silva Neto, A.J.: Solution of singular optimal control problems using the improved differential evolution algorithm. Journal of Artificial Intelligence and Soft Computing Research 1(3), 195–206 (2011)

    Google Scholar 

  36. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  37. Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  38. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. 25th Anniversary Machine Learning 85(25), 1–42 (2011)

    Article  MathSciNet  Google Scholar 

  39. Patan, K., Patan, M.: Optimal Training strategies for locally recurrent neural networks. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114 (2011)

    Google Scholar 

  40. Peteiro-Barral, D., Bardinas, B.G., Perez-Sanchez, B.: Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(1), 5–20 (2012)

    Google Scholar 

  41. Prampero, P.S., Attux, R.: Magnetic particle swarm optimization. Journal of Artificial Intelligence and Soft Computing Research 2(1), 59–72 (2012)

    Google Scholar 

  42. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  43. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

    Google Scholar 

  44. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, November 18-22, CD (2002)

    Google Scholar 

  45. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, July 26-29, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  46. Rutkowski, L., Przybył A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Transactions on Industrial Electronics 59, 1238–1247 (2012)

    Google Scholar 

  47. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online Speed Profile Generation for Industrial Machine Tool Based on Neuro-fuzzy Approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research 1(1), 59–79 (2011)

    Google Scholar 

  49. Tran, V.N., Brdys, M.A.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems. Journal of Artificial Intelligence and Soft Computing Research 1(1), 43–57 (2011)

    Google Scholar 

  50. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Cooperative Covering by Ant-Robots using Evaporating Traces, Technical report CIS-9610 (1996)

    Google Scholar 

  51. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Smell as a Computational Resource-A Lesson We Can Learn from the Ant. In: ISTCS, pp. 219–230 (1996)

    Google Scholar 

  52. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings 1998. IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  53. Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)

    Google Scholar 

  54. Zalasiński, M., Łapa, K., Cpałka, K.: New Algorithm for Evolutionary Selection of the Dynamic Signature Global Features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 113–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  55. Zalasiński, M., Cpałka, K.: New Approach for the On-Line Signature Verification Based on Method of Horizontal Partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  56. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  57. Zalasiński, M., Cpałka, K.: Novel Algorithm for the On-Line Signature Verification Using Selected Discretization Points Groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dziwiński, P., Bartczuk, Ł., Przybył, A., Avedyan, E.D. (2014). A New Algorithm for Identification of Significant Operating Points Using Swarm Intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07176-3_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07175-6

  • Online ISBN: 978-3-319-07176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics