Abstract
In this paper, an asymmetric approach to clustering of the asymmetric Self-Organizing Map (SOM) is proposed. The clustering is performed using an improved asymmetric version of the well-known k-means algorithm. The improved asymmetric k-means algorithm is the second proposal of this paper. As a result, we obtain the two-stage fully-asymmetric data analysis technique. In this way, we maintain the structural consistency of the both utilized methods, because they are both formulated in asymmetric version, and consequently, they both properly adjust to asymmetric relationships in analyzed data. The results of our experiments confirm the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001)
Martín-Merino, M., Muñoz, A.: Visualizing Asymmetric Proximities with SOM and MDS Models. Neurocomputing 63, 171–192 (2005)
Olszewski, D.: An Experimental Study on Asymmetric Self-Organizing Map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011)
Shieh, S.L., Liao, I.E.: A New Approach for Data Clustering and Visualization Using Self-Organizing Maps. Expert Systems with Applications 39(15), 11924–11933 (2012)
Tasdemir, K., Milenov, P., Tapsall, B.: Topology-Based Hierarchical Clustering of Self-Organizing Maps. IEEE Transactions on Neural Networks 22(3), 474–485 (2011)
Wu, S., Chow, T.W.: Clustering of the Self-Organizing Map Using a Clustering Validity Index Based on Inter-cluster and Intra-cluster Density. Pattern Recognition 37(2), 175–188 (2004)
Lampinen, J., Oja, E.: Clustering Properties of Hierarchical Self-Organizing Maps. Journal of Mathematical Imaging and Vision 2, 261–272 (1992)
MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
Steinhaus, H.: Sur la Division des Corp Matériels en Parties. Bulletin de l’Académie Polonaise des Sciences, C1. III 4(12), 801–804 (1956)
Olszewski, D.: Asymmetric k-Means Algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011)
Olszewski, D.: k-Means Clustering of Asymmetric Data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 243–254. Springer, Heidelberg (2012)
Okada, A., Imaizumi, T.: Multidimensional Scaling of Asymmetric Proximities with a Dominance Point. In: Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 307–318. Springer, Heidelberg (2007)
Okada, A.: An Asymmetric Cluster Analysis Study of Car Switching Data. In: Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2000)
Okada, A., Imaizumi, T.: Asymmetric Multidimensional Scaling of Two-Mode Three-Way Proximities. Journal of Classification 14(2), 195–224 (1997)
Zielman, B., Heiser, W.J.: Models for Asymmetric Proximities. British Journal of Mathematical and Statistical Psychology 49, 127–146 (1996)
Muñoz, A., Martin, I., Moguerza, J.M.: Support Vector Machine Classifiers for Asymmetric Proximities. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP 2003. LNCS, vol. 2714, pp. 217–224. Springer, Heidelberg (2003)
Muñoz, A., Martín-Merino, M.: New Asymmetric Iterative Scaling Models for the Generation of Textual Word Maps. In: Proceedings of the International Conference on Textual Data Statistical Analysis JADT 2002, pp. 593–603 (2002)
Heskes, T.: Self-Organizing Maps, Vector Quantization, and Mixture Modeling. IEEE Transactions on Neural Networks 12(6), 1299–1305 (2001)
Frank, A., Asuncion, A.: UCI machine learning repository (2010)
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000), Circulation Electronic Pages
Chengalvarayan, R., Deng, L.: HMM-Based Speech Recognition Using State-Dependent, Discriminatively Derived Transforms on Mel-Warped DFT Features. IEEE Transactions on Speech and Audio Processing 2(3), 243–256 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Olszewski, D., Kacprzyk, J., Zadrożny, S. (2014). Asymmetric k-means Clustering of the Asymmetric Self-Organizing Map. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_67
Download citation
DOI: https://doi.org/10.1007/978-3-319-07176-3_67
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07175-6
Online ISBN: 978-3-319-07176-3
eBook Packages: Computer ScienceComputer Science (R0)