Abstract
In this contribution we seek to evolve viable parameter values for a small-scale biological network motif concerned with bacterial nutrient uptake and metabolism. We use two different evolutionary approaches with the model: implicit and explicit. Our results reveal that significantly different characteristics of both efficiency and timescale emerge in the resulting evolved systems depending on the which particular approach is used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others

References
Alon, U.: Network motifs: theory and experimental approaches. Nature Review Genetics 8(6), 450–461 (2007)
Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004)
Chu, D.: Replaying the tape of evolution: Evolving parameters for a simple bacterial metabolism. In: IEEE Congress on Evolutionary Computation (CEC), pp. 213–220 (2013)
Chu, D.: Evolving parameters for a noisy bio-systems. In: 2013 IEEE Symposion series on Computational Intelligence (2013)
Chu, D., Zabet, N., Mitavskiy, B.: Models of transcription factor binding: Sensitivity of activation functions to model assumptions. Journal of Theoretical Biology 257(3), 419–429 (2009)
Chu, D., Zabet, N., Hone, A.: Optimal parameter settings for information processing in gene regulatory networks. BioSystems 104, 99–108 (2011)
Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)
Barnes, D., Chu, D.: Introduction to Modelling for Biosciences. Springer, Berlin (2010)
Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry 104, 1876–1889 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Barnes, D.J., Chu, D. (2014). Evolving Parameters for a Noisy Biological System – The Impact of Alternative Approaches. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-07176-3_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07175-6
Online ISBN: 978-3-319-07176-3
eBook Packages: Computer ScienceComputer Science (R0)