
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 295–307, 2014.
© Springer International Publishing Switzerland 2014

Evaluation of Model-Based User Interface
Development Approaches

Jürgen Engel, Christian Herdin, and Christian Märtin

Augsburg University of Applied Sciences, Faculty of Computer Science,
An der Hochschule 1, 86161 Augsburg, Germany
{Juergen.Engel,Christian.Herdin,
Christian.Maertin}@hs-augsburg.de

Abstract. The PaMGIS framework was developed at Augsburg University of
Applied Sciences and is aimed at supporting user interface designers without
profound software development skills to specify the diverse models which
allow for at least semi-automated generation of user interface source code.
Currently these are task, dialog, interaction, and layout models as well as user,
device, and environment models. The complexity of the model definitions is
reduced by the application of patterns of various types and different abstraction
levels. These patterns are specified by means of the PaMGIS Pattern
Specification Language (PPSL) that is a further refinement of the Pattern
Language Markup Language (PLML). Amongst other descriptive information
PPSL specifications incorporate sophisticated pattern relationships and model
fragments, which are deployed as soon as an individual pattern is applied. In
this context we have evaluated existing model-based user interface development
frameworks in order to elicit new ideas to improve the applicability of PaMGIS.

Keywords: Model-based user interface development, pattern-based
development, user interface modeling, user interface generation, HCI patterns.

1 Introduction

In the scope of our research within the Automation in Usability Engineering group
(AUE) at Augsburg University of Applied Sciences we develop an integrated
approach for the design and semi-automated generation of user interfaces (UI) of
interactive software applications named Pattern-based Modeling and Generation of
Interactive Systems (PaMGIS) [9], [10]. It combines both, model-based and pattern-
based development techniques and methods. We have identified room for
improvement regarding the modeling of dynamic UI behavior and the modeling of UI
layout aspects. In addition, we are interested in possibilities to influence the UI
appearance at runtime.

In this context we have conducted a literature review of existing model-based UI
development environments (MB-UIDE) in terms of their functionality, suitability,
adequacy, conformance to the abstraction layers defined by the CAMELEON
Reference Framework (CRF), i.e. Model, Abstract UI (AUI), Concrete UI (CUI), and

296 J. Engel, C. Herdin, and C. Märtin

Final UI (FUI) [1], and their general availability. The results will be used to extend
the potential of our PaMGIS framework and to overcome the mentioned deficiencies.

The rest of this paper is organized as follows: the review approach is described in
Section 2, brief descriptions of the considered MB-UIDEs are provided in Section 3,
the review results are summarized in tabular format in Section 4, and our lessons
learned and decisions regarding PaMGIS are depicted in Section 5. Finally, Section 0
provides the list of literature being consulted during the review process.

2 Review Approach

Several MBUID reviews have already been carried out and the results are available
through the Internet, e.g. [7], [29], [42]. However, two of the documents date from the
1990’s [29], [42] and the most current from the year 2001 [7] and therefore they do
not cover novel approaches. Nevertheless, these documents delivered valuable input
for our updated evaluation, notably for defining the MB-UIDE characteristics to be
investigated.

Subject of the literature review has been an assortment of existing MD-UIDEs.
Within the current paper we focus on the environments listed in Table 1.

Table 1. MB-UIDEs considered in this paper

MB-UIDE Originator Literature reviewed

AME Augsburg University of Applied Sciences, DE [24],[25],[26]

ITS IBM T.J. Watson Research Center, US [1],[45],[46]

MARIAE Istituto di Scienza e Tecnologie dell‘ Inform., IT [20],[32],[33],[34],[35],[36]

MECANO Stanford University, US [38],[41]

MOBI-D Stanford University, US [37],[39],[40]

SUPPLE University of Washington, US [12],[13],[14],[15][16],[17],[18]

TERESA Istituto di Scienza e Tecnologie dell‘ Inform., IT [3],[4],[27],[28],[31]

Our literature review actually compassed several more MB-UIDEs, including

ADEPT [23], FUSE [22], GENIUS [21], HUMANOID [43], JANUS [1], MASTER-
MIND [44], TADEUS [8], TEALLACH [19], TRIDENT [5], and UIDE [11]. On the
one hand, we could not retrieve any more recent documentation for these fairly old
approaches and on the other hand, they have been already covered within the former
evaluations [7], [29], [42]. Therefore, and due to space restrictions we picked the most
current MB-UIDEs and such systems for that we assumed they would deliver the
most promising results for our purposes.

For each of the MD-UIDEs we captured (1) the short name, (2) the full name, if
any, (3) its originator, (4) date of first publication, (5) actuality in terms of current
version or most current publication, (6) provided functionality in terms of supporting
UI modeling, UI generation, UI runtime environment, (7) provided support of CRF
abstraction levels, i.e. model, AUI, CUI, and FUI, (8) models actually supported, (9)
utilized model notations resp. User Interface Description Languages (UIDL), (10)
whether the MB-UIDE was mainly intended to support multi-device, multi- platform,

 Evaluation of Model-Based User Interface Development Approaches 297

multi-user, or multi-environment developments, (11) tool-support offered with the
MB-UIDE, (12) supported target programming languages, (13) supported target
devices respectively target platforms, (14) its availability in terms of whether there is
a real implementation of the MB-UIDE, meaningful application examples are
available and whether the framework can be freely downloaded from the Internet, and
finally (15) type of available documentation.

Due to space limits it was not possible to present all details of the evaluated
characteristics within this paper. Therefore, we decided to provide as much
information as possible within the textual MB-UIDE descriptions (see Section 3) and
in summarized tabular form (see Section 4).

3 Description of Considered MB-UIDE

3.1 AME

The Application Modeling Environment (AME) was developed at Augsburg
University of Applied Sciences between 1992 and 1996 [24], [25], [26]. AME’s goal
was to tightly integrate the object-oriented software development process with user
interface modeling and design starting already in the early phases of the software
engineering life cycle and to accompany the software developer until the final
implementation of the interactive system. AME used structural information, object-
oriented relationships, and semantic knowledge about the application context to
automatically generate prototypical MS Windows GUIs for business applications
including the dynamic behavior of the UI and the binding to the business objects.

AME uses an object-oriented analysis (OOA) model as starting point. An OOA
model defines the domain classes with their attributes and typically contains only
abstract specifications of the domain class methods (i.e. method name, calling
parameters, calling parameter types, return type) as well as the relationships between
classes. OOA models define the domain space of an application. They are created by
model editor tools and are transformed into AME’s internal model representation. The
resulting class models unify the modeling functionality both from Rumbaugh’s OMT
and Coad and Yourdon’s OOA. Attribute names and data types, as well as
relationships and their types (generalization/specialization, aggregation, association
with semantic information) are parsed by the structure refinement tools to
automatically create the window and dialog box structure of the application and for
defining abstract interaction objects (AIOs). Domain classes may also include
message links (i.e. dynamic relationships to other classes) that can be exploited by
AME’s behavior tools to automatically create dynamic user interface behavior. No
task model is therefore needed. Thus, an OOD model that defines the basis for the
solution space, including the user interface structure, can be generated automatically.
However, it is also possible for developers to introduce their own OOD classes with
AIOs added to the domain objects or to modify the OOD model.

A series of additional knowledge-based automated tools can then be applied to
create a prototype of the user interface with concrete interaction objects (CIOs) in the
UI builder of Intellicorp’s KAPPA-PC development platform including dynamic

298 J. Engel, C. Herdin, and C. Märtin

behavior (i.e. interaction dynamics, navigation, function calls). At this stage,
developers and designers can again interfere with the prototype to add their own
styles or change the types of the generated CIOs. The UI CIOs are still directly linked
to the internal OOD representation. In a final step, the detailed OOD representation is
again parsed to finally generate C++ UI code for MS Windows.

3.2 ITS

The Interactive Transaction System (ITS) has been developed in the context of a
scientific project at the T.J. Watson Research Center of the International Business
Machines Corporation (IBM) in Yorktown Heights. The first publication dates from
1989. ITS provides a rule-based approach for the definition and generation of
application and user interface models and incorporates a runtime environment for
execution of these models [2]. Amongst others, the visitor information system of the
world exposition EXPO 1992 in Sevilla (Spain) has been implemented using ITS
[46], [45].

A major principle is the strict separation of the actual content of a software
application respectively a user interface from its presentation [2]. The ITS architecture
is subdivided into four layers: (1) The Action Layer implements the necessary functions
of the application’s business logic independent of any dialog control matters. (2) The
Dialog Layer defines the content of the user interface without considering its
presentation. Dialogs are specified by means of logical frames and the control flow
among them. (3) The Style Rule Layer defines the presentation and behavior of the user
interface. Based on modifiable rules the system decides automatically by which
concrete interaction object every single abstract interaction object will be replaced. Style
rules are executed at compile time. (4) Finally the Style Program Layer takes care for
the mapping of toolkit primitives according to the settings defined within the Style Rule
Layer. These decisions are made during runtime, i.e., the final layout is determined not
until a frame is displayed on the screen [45].

In the initial step of the ITS development process an expert of the problem domain
specifies the data types being exchanged between the UI and the application as well
as the dialogs. An application programmer implements the functions of the business
logic [45]. From the data type and dialog definitions the Dialog Compiler generates a
parse tree. This tree is subsequently passed to the Style Compiler that assigns the
appropriate interaction objects to the tree’s nodes by exploiting the Style Rules. The
resulting full-featured parse tree is processed by the runtime environment that is
responsible for calling the application functions and displaying the user interface [2].

3.3 TERESA

The Transformation Environment for Interactive Systems Representations (TERESA)
has been developed by the Human-Computer Interaction (HCI) group of the Istituto di
Scienza e Tecnologie dell‘ Informazione which is an Institute of the National Research
Council of Italy (CNR) [4]. This approach supports the design and development of
multi-device user interfaces. The work on TERESA started in 2003 [20].

 Evaluation of Model-Based User Interface Development Approaches 299

The first step of the TERESA development methodology envisages the creation of
a high-level task model which includes not only the actual relevant tasks and sub-
tasks, but also information related to contexts of use and involved roles. Additionally,
it uses a domain model which describes all interaction objects that have to be
manipulated during the task execution as well as the relationships between these
objects. From this task model so-called platform-specific system task models are
derived by carrying out filtering and optional refinement actions. This forms the basis
for generating abstract user interfaces (AUI) consisting of a set of abstract
presentations which arise from the analysis of the interrelations of the sub-tasks. The
presentations can be understood as compositions of abstract interaction objects
resulting from the application of various composition operators, including grouping,
ordering, hierarchy, and relation. From the AUI source a platform-dependent UI
description is generated considering any specifics of the target device and target
operating system. In this stage each abstract interaction object is replaced by a
concrete one [28]. From this concrete description (CUI), in turn, the final user
interface (FUI), is generated, e.g. in terms of XHTML or Java code [27]. TERESA
supports the UI designer by applying different strategies with regard to the fact that it
is not necessarily reasonable to implement all the tasks and sub-tasks in a similar way
on each intended target platform [4], [27]. Furthermore the construction of multi-
modal user interfaces is supported [31].

3.4 MARIAE

The Model-based Language for Interactive Applications (MARIA) Authoring
Environment (MARIAE) is also developed by the HCI group of ISTI-CNR [32]. The
initial version has been designed on the basis of the expertise and experiences
collected with the predecessor environment TERESA. The first publications date from
2009 [34], [35], [36]. MARIAE is still under development; the current version 1.5.6
can be downloaded from the Internet1.

MARIAE supports the design and development of Web Service-based interactive
applications for multiple target platforms. Usually, Web Services are not constructed
in the course of the development of the interactive application, but in fact already
existing ones are being accessed. This matter of fact is factored within the MARIAE
development process that combines both top-down and bottom-up approaches [36].
Additionally, on the one hand, MARIAE is fully compliant to the CRF degrees of
abstraction and hence implements the model level as well as AUI, CUI, and FUI [32].
This implies a top-down development procedure. On the other hand, the analysis and
planning regarding the utilization of Web Services demands a bottom-up approach
[36].

In a first step the task model of the interactive application is elaborated using the
ConcurTaskTrees (CTT) notation [30]. Subsequently, the relations between the task
model and the chosen Web Services are established. They are described by means of

1 See http://giove.isti.cnr.it/tools/MARIAE/download

300 J. Engel, C. Herdin, and C. Märtin

the Web Service Description Language (WDSL)2 and optionally possess Annotations
which contain information regarding their later appearance in the user interface. On
the basis of the so-called enriched task model the AUI can be generated [32]. The
transformation process mainly exploits the hierarchic structure of the task model, the
task types, the temporal relationships between the tasks, and the mentioned Web
service Annotations. In this stage Presentation Task Sets are identified which consist
of tasks being active at the same period of time [33]. In the next step, the AUI is
transformed into the platform-specific CUI. This process can be regarded as
refinement of the abstract model where essentially the abstract interaction objects are
replaced by selected concrete ones. These conversions are specified via Extensible
Stylesheet Language Transformation (XSLT)3 [33]. AUI and CUI are described my
means of MARIA XML [34]. Finally, the CUI is transformed by means of XSLT into
a target language [33], e.g., Extensible Hypertext Markup Language (XHTML)4.

3.5 MECANO and MOBI-D

MECANO was developed at the Department of Medicine and Computer Science at
the Stanford University in the context of the Mecano project [41]. The development
started in 1995 [38] and the latest publication has been published at the CADUI-
Conference in 1996 [41]. MECANO is a model-based interface development
environment that enhances the concept of generating interface specifications from
data models. It utilizes domain and interface models. The domain model is employed
to generate the layout and the relationships inside the model to determine the dynamic
behavior of user interfaces [41].

The MECANO Interface Model (MIM) is described by means of the purpose-built
MECANO interface modeling language named MIMIC. MIMIC is an object-oriented
language that supports modeling at a meta-level and assigns specific roles to each
interface element. The grammar of MIMIC is written in Backus-Naur-Form (BNF)
[38]. The development environment that supports the MECANO framework in terms
of MIMIC and its associated MIMs is called MOBI-D [37].

The Model-based Interface Designer (MOBI-D) is the successor of MECANO
[37]. The development started in January 1997 [37] and the last publication dates
from 1999 [40]. Like MECANO, MOBI-D supports model-based design of user
interfaces. It uses five models to reach this goal: user, task and domain model as
abstract models, dialog and presentation model as concrete models [39]. MOBI-D has
no support for automatic transformation between the models, but the user can do this
conversion manually. All models and mappings are specified with the Mecano
Interface Model (MIM) textual notation. The Mecano interface modeling languages
(MIMIC) are used to define the components, structure, the elements and relations
within interface models [37].

2 See http://www.w3.org/TR/wsdl
3 See http://www.w3c.org/TR/xslt
4 See http://www.w3.org/TR/xhtml1/

 Evaluation of Model-Based User Interface Development Approaches 301

MOBI-D uses a textual task description of an end user as starting point. The
MOBI-D tool U-TEL translates this description into a structured user-task description.
The UI developer uses this description to build the user-task and domain models with
the help of MOBI-D’s model editing tools. MOBI-D uses the user-task and domain
models to display suggestions for the presentation and interaction techniques. The
developer can select one of these suggestions for the programming of concrete end
user interfaces. Finally, the end user conducts a test of the new user interface [39].

3.6 SUPPLE

The SUPPLE system has been developed at the University of Washington in Seattle.
The first publication dates from 2004 [14], the most current document we discovered
in the Internet is from 2010 [15]. This approach utilizes functional interface
specifications as well as device and user models. User interface generation and
adaptation are treated as decision-theoretic optimization problems. SUPPLE searches
for optimal renditions considering any relevant device constraints and minimizing the
user’s effort required to carry out the necessary UI actions [14]. In addition, SUPPLE
is capable to adapt the user interface to the user’s individual work style [13] as well as
to personal preferences [16]. UI generation and adaptation is executed during runtime
[13]. SUPPLE++ is a variant of the SUPPLE system and supports automatic creation
and modification of user interfaces for users with motor and/or visual impairments.
The initial publication regarding SUPPLE++ is from 2007 [15].

Within SUPPLE a functional interface specification is defined as a set of abstract
interface elements and a set of interface constraints. The elements are specified in
terms of their data types that can be either primitive or complex. The constraints are
expressed as functions mapping renderings to a Boolean value and allow, for instance,
map certain elements to the selfsame widget. The device model comprises of the
available widgets, device-related constraints, and two device-specific functions for
evaluating the adequacy of the widgets to be used. One function measures the
appropriateness of the widgets for interacting with the variables of the given types
while the other calculates the user’s effort required for navigating through the UI. The
user model is defined by means of user traces, which are a type of logs of user
actions, recorded at runtime. Supple is aimed at finding the most appropriate
rendering for each individual abstract interface element. This is achieved by means of
a branch-and-bound algorithm for minimizing a cost function, which is composed of
the previously mentioned functions and information from the device and user models
[14]. The cost function consists of more than 40 concerted parameters and cannot
easily be determined manually. Therefore, a tool named ARNAULD has been
developed in order to facilitate this process [16]. SUPPLE++ primarily utilizes even
more complex cost functions in order to consider the motor and visual impairments of
handicapped users. In analogy to ARNAULD SUPPLE++ is supported by another
tool named Activity Modeler [12].

302 J. Engel, C. Herdin, and C. Märtin

4 Summary of Review Results

General MB-UIDE characteristics are depicted in Table 2 in a condensed format.

Table 2. General MB-UIDE characteristics

MB-UIDE First

Publ.

Current Vers. /

Latest Publ.

Functionality CRF Abstraction

Levels

Target

(Multi~)

AME 1993 [26] 1998 [24] Model, Generat.,

Runtime [24][26]

Model, AUI, CUI,

FUI [26]

n/a

ITS 1989 [2] 1990 [45],[46] Model, Runtime

[46]

Model, AUI, CUI

[2]

Platform, User

[46]

TERESA 2003 [28] Version 3.4

2008 [31]

Model,

Generation [27]

Model, AUI, CUI,

FUI [27],[28],[31]

Platform [28],[31]

Modal [31]

MARIAE 2009

[34],[35]

Version 1.5.6 Model,

Generation [34],

[35]

Model, AUI, CUI,

FUI [34]

Platform [34]

MECANO 1995 [38] 1996 [38] Model, Generat.,

Runtime [41]

Model, AUI, CUI

[38][41]

n/a

MOBI-D 1997 [37] 1999 [40] Model, Generat.,

Runtime [39]

Model, AUI, CUI

[39]

n/a

SUPPLE 2004 [14] 2010 [15] Model,

Generation

[14],[12],

Runtime [15][13]

Model, AUI, CUI

[14]

Device [14]

User [14],[17]

Details on utilized models and supported target platforms and program languages

are provided in Table 3.

Table 3. MB-UIDE models and supported platforms and languages

MB-UIDE Models Model notations Target Platforms Target Languages

AME Application,

Domain, Kappa

PC UI Prototype

[26]

OOA, OOD [26] desktop [26] C++, KAL [26]

ITS Domain [46],

Dialog [2]

Proprietary [2],[45] desktop [2],[45],[46] ITS runtime

environment [45]

TERESA Task, Domain,

System Task [28],

Interaction [31]

Task: CTT [28],

AUI, CUI:

TERESA XML

[31]

graphical desktop,

vocal, cellphone,

graphical & vocal,

graphical & gestural,

digital TV [31]

XForms [27,]

XHTML MP,

VoiceXML, X+V,

SVG, Xlet, Gesture

Library for MS [31]

 Evaluation of Model-Based User Interface Development Approaches 303

Table 3. (continued)

MARIAE Data, Event,

Dialog, Task

[34],[35]

Transformation

[36]

Data: XSD, Task:

CTT [35],

Transformation:

XSLT [34], AUI,

CUI:

MARIA XML [33]

graphical form-based,

graphical mobile

form-based, vocal,

digital TV, graphical

direct manipulation,

multimodal desktop /

mobile, advanced

mobile [34]

XHTML, Java [36]

MECANO Domain, Interface

[38][41]

MIM, MIMIC

[38][41]

desktop [38][41] MECANO runtime

environment [41]

MOBI-D User, User-task,

Domain,

Presentation,

Dialog [40]

MIM, MIMIC [37] desktop [37][40] MOBI-D runtime

environment [37]

SUPPLE Interface, Device,

User, Data [14],

Cost [12],

Preference, Ability

[18]

Proprietary

[14],[12]

mobile phone, touch

screen devices [14],

desktop computer

[12]

SUPPLE runtime

environment [14],[12]

Information on comprised tools, availability of the MB-UIDEs, and application

examples are summarized in Table 4.

Table 4. MB-UIDE tools, availability, and application examples

MB-UIDE Tools Availability Application Examples

AME TRANTOOL,

OODevelopTool, ODE

Editor [26]

Prototype [24] Small office applications for evaluation

purposes

ITS Dialog Compiler, Style

Compiler [2]

Existing framework

[45],[46]

Visitor Information System EXPO

1992 [45],[46]

TERESA CTTE, Editors and

Generators [31]

Version 3.4 available at

http://giove.isti.cnr.it/to

ols/TERESA/download

Museum Application [27]

MARIAE Transformation Editor,

Tasks-Services Binding

Editor, UI Editor (AUI,

CUI), FUI Preview [36]

Version 1.5.6 available

at

http://giove.ist.cnr.it/too

ls/MARIAE/download

Pac-Man game [34], Home control

application [35], Sales order

management [33], DVD management

application [32]

MECANO MOBI-D [37] Exist. framework [41] Ship protection system [38]

MOBI-D TIMM [40],

U-TEL [39]

Exist. framework [40] Logistic example [40]

SUPPLE ARNAULD [16][18]

[13], Activity Modeler

[16][18]

Exist. framework [14] FTP client, Classroom equipment

controller [14], Email client, Amazon

Web Service interface [12]

304 J. Engel, C. Herdin, and C. Märtin

5 Conclusion

All the MB-UIDEs considered in our detailed literature review can be regarded as
valuable contributions to model-based user interface design and development.
However, none of the approaches makes use of a combination of model-based and
pattern-based development methods comparable to PaMGIS.

AME integrates an object-oriented software development process with user
interface modeling and design and employs OOA and OOD models without requiring
an explicit task model. AME aims at desktop computers as target platform.

Compared to PaMGIS, MECANO and MOBI-D use a similar set of models as
basis for UI generation. Like AME, the target platform is desktop computer.

SUPPLE and SUPPLE++ start with a data model and treat UI generation as
decision-theoretic optimization problem. On the whole we regard this as a very
interesting approach, but too different to the current PaMGIS proceeding.

With regard to the further development of our PaMGIS framework, we intend to
inspect ITS and MARIAE in more detail. On one hand this decision is based on the
fact that these two MB-UIDEs provide solutions for the features we are looking for.
On the other hand the pattern-based part of PaMGIS strongly resembles MARIAE in
terms of its accordance with the CRF abstraction levels, types of utilized models, and
model exploitation. In addition, MARIAE development is still ongoing and the
current version is even available on the Internet and allows for practical exertion.

References

1. Balzert, H., et al.: The JANUS Application Development Environment - Generating More
than the User Interface. In: Computer-Aided Design of User Interfaces, pp. 183–206.
Namur University Press (1996)

2. Bennett, W.E., et al.: Transformations on a Dialog Tree: Rule-Based Mapping of Content
to Style. In: Proceedings of the ACM SIGGRAPH Symposium on User Interface Software
and Technology, Williamsburg, Virginia, USA (1989)

3. Berti, S., et al.: TERESA: A Transformation-based Environment for Designing and
Developing Multi-Device Interfaces. In:Proceedings of ACM CHI 2004 (Vienna, April
2004), vol. II, pp. 793–794. ACM Press (2004)

4. Berti, S., Mori, G., Paternò, F., Santoro, C.: TERESA: An Environment for Designing
Multi-Device Interactive Services (2005), http://giove.isti.cnr.it/
attachments/publications/2005-A2-80.pdf (last Website call on January
25, 2014)

5. Bodart, F., et al.: Towards a Systematic Building of Software Architectures: the TRIDENT
Methodological Guide. In: Design, Specification and Verification of Interactive Systems,
pp. 262–278. Springer (1995)

6. Calvary, G., et al.: The CAMELEON Reference Framework. Document D1.1 of the
CAMELEON R&D Project IST-2000-30104 (2002)

7. da Silva, P.P.: User interface declarative models and development environments: A survey.
In: Palanque, P., Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, pp. 207–226. Springer,
Heidelberg (2001)

 Evaluation of Model-Based User Interface Development Approaches 305

8. Elwert, T., Schlungbaum, E.: Modelling and Generation of Graphical User Interfaces in
the TADEUS Approach. In: Designing, Specification and Verification of Interactive
Systems, pp. 193–208. Springer (1995)

9. Engel, J., Märtin, C.: PaMGIS: A Framework for Pattern-Based Modeling and Generation
of Interactive Systems. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII
2013. LNCS, vol. 5610, pp. 826–835. Springer, Heidelberg (2009)

10. Engel, J., Märtin, C., Herdin, C., Forbrig, P.: Formal Pattern Specifications to Facilitate
Semi-automated User Interface Generation. In: Kurosu, M. (ed.) HCII/HCI 2013, Part I.
LNCS, vol. 8004, pp. 300–309. Springer, Heidelberg (2013)

11. Foley, J., et al.: The User Interface Design Environment - A Computer Aided Software
Engineering Tool for the User Computer Interface. IEEE Software 6, 25–32 (1989)

12. Gajos, K., Christianson, D., Hoffmann, R., Shaked, T., Henning, K., Long, J.J., Weld,
D.S.: Fast and Robust Interface Generation for Ubiquitous Applications. In: Beigl, M.,
Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 37–55.
Springer, Heidelberg (2005)

13. Gajos, K., Weld, D.: Preference Elicitation for Interface Optimization. In: UIST 2005:
Proceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology, New York, USA (2005)

14. Gajos, K., Weld, D.S.: SUPPLE: Automatically Generating User Interfaces. In:
Proceedings of the 9th International Conference on Intelligent User Interfaces, pp. 93–100
(2004)

15. Gajos, K., Weld, D., Wobbrock, J.: Automatically Generating Personalized User Interfaces
with SUPPLE. Artificial Intelligence 174, 910–950 (2010)

16. Gajos, K., Weld, S., Wobbrock, J.: Decision-Theoretic User Interface Generation. In:
AAAI 2008, pp. 1532–1536. AAAI Press (2008)

17. Gajos, K., Wobbrock, J., Weld, D.: Automatically Generating User Interfaces Adapted to
Users’ Motor and Vision Capabilities. In: UIST 2007: Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technology, New Port, Rhode Island,
USA (2007)

18. Gajos, K., Wobbrock, J., Weld, D.: Improving the Performance of Motor-Impaired Users
with Automaticalls-generated, Ability-Based Interfaces. In: CHI 2008: Proceeding of the
26th Annual SIGCHI Conference on Human Factors in Computing Systems, New York,
USA (2008)

19. Griffiths, T., et al.: Teallach: A Model-Based User Interface Development Environment
for Object Databases. In: Proceedings of UIDIS 1999, pp. 86–96. IEEE Press (1999)

20. ISTI: MARIA Fact Sheet (2011), http://giove.isti.cnr.it/tools/MARIA/
MARIA%20Fact%20Sheet.pdf (last Website call on January 25, 2014]

21. Janssen, C., Weisbecker, A., Ziegler, J.: Generating User Interfaces from Data Models and
Dialogue Net Specifications. In: Proceedings of Inter CHI 1993, pp. 418–423. ACM Press
(1993)

22. Lonczewski, F., Schreiber, S.: The FUSE-System: an Integrated User Interface Desgin
Environment. In: Computer-Aided Design of User Interfaces, pp. 37–56. Namur
University Press (1996)

23. Markopoulos, P., Pycock, J., Wilson, S., Johnson, P.: Adept - A Task Based Design
Environment. In: Proceedings of the 25th Hawaii International Conference on System
Sciences, pp. 587–596. IEEE Computer Society Press (1992)

24. Märtin, C.: Model-Based Software Engineering for Interactive Systems. In: Systems:
Theory and Practice. Advances in Computing Science Series, pp. 187–211. Springer,
Heidelberg (1998)

306 J. Engel, C. Herdin, and C. Märtin

25. Märtin, C.: Software Life Cycle Automation for Interactive Applications: The AME
Design Environment. In: Computer-Aided Design of User Interfaces, pp. 57–74. Namur
University Press (1996)

26. Märtin, C., Winterhalder, C.: Integrating CASE and UIMS for Automatic Software
Construction. In: Proceedings of the 5th Int. Conference on Human-Computer Interaction -
HCI International 1993, pp. 291–296. Elsevier (1993)

27. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice User
Interfaces through Multiple Logical Descriptions. Journal IEEE Transactions on Software
Engineering 30(8), 507–520 (2004)

28. Mori, G., Paternò, F., Santoro, C.: Tool Support for Designing Nomadic Applications. In:
IUI 2003 Proceedings of the 8th International Conference on Intelligent User Interfaces,
pp. 141–148. ACM (2003)

29. Myers, B.A.: State of the Art in User Interface Software Tools. In: Advances in Human-
Computer Interaction, vol. 4. Ablex Publishing (1992)

30. Paternò, F.: The ConcurTaskTrees Notation. In: Model-Based Design and Evaluation of
Interactive Applications, pp. 39–66. Springer, Heidelberg (2000)

31. Paternò, F., et al.: Authoring Pervasive Multimodal user Interfaces. International Jounal of
Web Engineering and Technology 4(2), 235–261 (2008)

32. Paternò, F., Santoro, C., Spano, L.D.: Engineering the Authoring of Usable Service Front
Ends. The Journal of Systems and Software 84, 1806–1822 (2011)

33. Paternò, F., Santoro, C., Spano, L.D.: Exploiting Web Service Annotations in Model-based
User Interface Development. In: Proceedings of EICS 2010 - 2nd ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, pp. 219–224. ACM (2010)

34. Paternò, F., Santoro, C., Spano, L.D.: MARIA: A Universal, Declarative, Multiple
Abstraction-Level Language for Service-Oriented Applications in Ubiquitous
Environments. ACM Transactions on Human-Computer Interaction (2009)

35. Paternò, F., Santoro, C., Spano, L.D.: Model-Based Design of Multi-device Interactive
Applications Based on Web Services. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher,
L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009 Part I. LNCS,
vol. 5726, pp. 892–905. Springer, Heidelberg (2009)

36. Paternò, F., Santoro, C., Spano, L.D.: Support for Authoring Service Front-Ends. In:
Proceedings of EICS 2009 - 1st ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, Pittsburgh, PA, USA (2009)

37. Puerta, A., Maulsby, D.: Management of Interface Design Knowledge with MODI-D. In:
Proceedings of IUI 1997, Orlando, FL, pp. 249–252 (1997)

38. Puerta, A.: The Mecano Project: Comprehensive and Integrated Support for Model-Based
Interface Development. In: Computer-Aided Design of User Interfaces, pp. 19–36. Namur
University Press (1996)

39. Puerta, A., Eisenstein, J.: Interactively Mapping Task Models to Interfaces in MOBI-D. In:
Proc. Eurographics Workshop on Design, Specification and Validation of Interactive
Systems (DSV-IS 1998), pp. 261–273 (1998)

40. Puerta, A., Eisenstein, J.: Towards a general computational framework for model-based
interface development systems. In: IUI 1999 Proceedings of the 4th International
Conference on Intelligent User Interfaces, pp. 171–178. ACM, New York (1999)

41. Puerta, A., Eriksson, H., Gennari, J., Musen, M.: Beyond Data Models for Automated User
Interface Generation. In: Proc. British HCI 1994, pp. 353–366. University Press (1994)

42. Schlungbaum, E.: Model-based User Interface Software Tools - Current State of
Declarative Models. Graphics, Visualization and Usability Centre, Georgia Institute of
Technology, GVU Tech Report (1996)

 Evaluation of Model-Based User Interface Development Approaches 307

43. Szekely, P., Luo, P., Neches, R.: Facilitating the Exploration of Interface Design
Alternatives: The HUMANOID Model of Interface Design. In: Proceedings of SIGCHI
1992, vol. 1992, pp. 507–515 (1992)

44. Szekely, P., et al.: Declarative Interface Models for User Interface Construction Tools: the
MASTERMIND Approach. In: Engineering for Human-Computer Interaction, pp. 120–
150. Chapman & Hall (1996)

45. Wiecha, C., et al.: ITS: A Tool for Rapidly Developing Interactive Applications. ACM
Transactions on Information Systems 8(3), 204–236 (1990)

46. Wiecha, C., Boies, S.: Generating User Interfaces: Principles and Use of ITS Style Rules.
In: Proceedings of UIST 1990 (1990)

	Evaluation of Model-Based User Interface Development Approaches
	1 Introduction
	2 Review Approach
	3 Description of Considered MB-UIDE
	3.1 AME
	3.2 ITS
	3.3 TERESA
	3.4 MARIAE
	3.5 MECANO and MOBI-D
	3.6 SUPPLE

	4 Summary of Review Results
	5 Conclusion
	References

