Skip to main content

Extremely Fast Unsupervised Codebook Learning for Landmark Recognition

  • Conference paper
Modern Advances in Applied Intelligence (IEA/AIE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8481))

  • 2062 Accesses

Abstract

Traditional landmark recognition methods work by using local image features, k-means vector quantization and classifiers like SVM to recognize landmarks. However, the inefficient codebook learning by k-means constraints the possibility of using high-dimensional feature spaces, large numbers of image descriptors and large codebooks which are needed for good results. In this paper we introduce a fast unsupervised codebook learning - Extremely Random Projection Forest (ERPF), which is an ensemble of random projection tree with randomly splitting direction. We evaluate our approach on two public datasets and ERPF significantly outperforms other spatial tree methods and k-means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hao, Q., Cai, R., Li, Z., Zhang, L., Pang, Y., Wu, F.: 3d visual phrases for landmark recognition. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3594–3601 (2012)

    Google Scholar 

  2. Li, Y., Crandall, D.J., Huttenlocher, D.P.: Landmark classification in large-scale image collections. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1957–1964 (2009)

    Google Scholar 

  3. Zheng, Y.-T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.-S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1085–1092 (2009)

    Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Heinly, J., Dunn, E., Frahm, J.-M.: Comparative evaluation of binary features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 759–773. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Int. Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, p. 22 (2004)

    Google Scholar 

  8. Perronnin, F., Dance, C., Csurka, G., Bressan, M.: Adapted vocabularies for generic visual categorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 464–475. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: International Conference on Computer Vision, vol. 1, pp. 604–610 (2005)

    Google Scholar 

  10. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  11. Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of manifolds using random projections. In: Advances in Neural Information Processing Systems, pp. 473–480 (2007)

    Google Scholar 

  12. Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2707–2714 (2010)

    Google Scholar 

  13. McFee, B., Lanckriet, G.R.G.: Large-scale music similarity search with spatial trees. In: International Society for Music Information Retrieval, pp. 55–60 (2011)

    Google Scholar 

  14. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  15. Ji, R., Duan, L.-Y., Chen, J., Yang, S., Huang, T., Yao, H., Gao, W.: Pkubench: a context rich mobile visual search benchmark. In: International Conference on Image Processing, pp. 2545–2548 (2011)

    Google Scholar 

  16. Chen, D.M., Baatz, G., Koser, K., Tsai, S.S., Vedantham, R., Pylvanainen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M.: City-scale landmark identification on mobile devices. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 737–744 (2011)

    Google Scholar 

  17. Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 791–804 (2010)

    Google Scholar 

  18. Bergamo, A., Sinha, S.N., Torresani, L.: Leveraging structure from motion to learn discriminative codebooks for scalable landmark classification. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 763–770 (2013)

    Google Scholar 

  19. Fritz, G., Seifert, C., Paletta, L.: A mobile vision system for urban detection with informative local descriptors. In: International Conference on Computer Vision Systems, p. 30 (2006)

    Google Scholar 

  20. Cai, H., Yan, F., Mikolajczyk, K.: Learning weights for codebook in image classification and retrieval. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2320–2327 (2010)

    Google Scholar 

  21. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  22. Dasgupta, S., Freund, Y.: Random projection trees for vector quantization. IEEE Trans. Information Theory 55(7), 3229–3242 (2009)

    Article  MathSciNet  Google Scholar 

  23. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2911–2918 (2012)

    Google Scholar 

  24. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.R., Lin, C.-J.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, Y., Lu, W. (2014). Extremely Fast Unsupervised Codebook Learning for Landmark Recognition. In: Ali, M., Pan, JS., Chen, SM., Horng, MF. (eds) Modern Advances in Applied Intelligence. IEA/AIE 2014. Lecture Notes in Computer Science(), vol 8481. Springer, Cham. https://doi.org/10.1007/978-3-319-07455-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07455-9_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07454-2

  • Online ISBN: 978-3-319-07455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics