Skip to main content

Multiobjective Optimization of Microchannels with Experimental Convective Heat Transfer Coefficient of Liquid Ammonia

  • Conference paper
Modern Advances in Applied Intelligence (IEA/AIE 2014)

Abstract

A multi-objective optimization on a system of microchannels with environmentally friendly liquid ammonia is presented. Further, comparative studies were done on two approaches of obtaining the convective heat transfer coefficient necessary for the procedure; from the conventional Nusselt number correlation and that from experimentally measured data. The thermohydrodynamic performance of the coolant agrees well with theory with a higher resistance associated with the experimentally obtained data due to overall contributions from experimental apparatus generally not considered in mathematical representations of actual processes. The study shows that the pairing of a fast and simple evolutionary algorithm method as MOGA with experimental data is a powerful combination when new coolants are being explored for replacements in current systems. The results would be useful in providing the trends and patterns needed to evaluate the potentials of new coolants in microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kandlikar, S.G., Grande, W.J.: Evolution of microchannel flow passages-thermohydraulic performance and fabricationtechnology. Heat Transfer Eng. (24), 3–17 (2003)

    Google Scholar 

  2. Kleiner, M.B., Kuhn, S.A., Haberger, K.: High performance forced air cooling scheme employing microchannel heat exchangers. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A 20(4), 795–804 (1995)

    Article  Google Scholar 

  3. Zhimin, W., Fah, C.K.: Optimum thermal design of microchannel heat sinks. In: Proceeding of the 1997 1st Electronic Packaging Technology Conference, EPTC, Singapore, pp. 123–129 (1997)

    Google Scholar 

  4. Iyengar, M., Garimella, S.: Design and optimization of microchannel cooling systems. IEEE Transactions, 54–62 (2006)

    Google Scholar 

  5. Hu, G., Xu, S.: Optimization design of microchannel heat sink based on SQP Method and numerical simulation. In: Proceeding of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, China, pp. 89–92 (2009)

    Google Scholar 

  6. Escher, W., Brunschwiler, T., Shalkevich, N., Shalkevich, A., Burgi, T., Michel, B., Poulikakos, D.: On the cooling of electronics with nanofluids. Journal of Heat Transfer (133), 1–11 (2011)

    Google Scholar 

  7. I.,S.R.: Nanofluid as a coolant for electronic devices (cooling of electronic devices). International Journal of Thermal Sciences (32), 76–82 (2012)

    Google Scholar 

  8. Ahmed, M.A., Normah, M.G., Robiah, A.: Thermal and Hydrodynamic Analysis of Microchannel Heat Sinks: A Review. Renewable and Sustainable Energy Reviews (21), 614–622 (2013), doi:10.1016/j.rser.2013.01

    Google Scholar 

  9. Philips, R.J.: Microchannel heat sinks. In: Bar-Cohen, A., Kraus, A.D. (eds.) Advances in Thermal Modeling of Electronic Components and Systems, vol. 2, pp. 109–184. ASME Press, New York (1990)

    Google Scholar 

  10. Knight, R.W., Goodling, J.S., Gross, B.E.: Optimal thermal design of air cooled forced convection finned heat sinks – experimental verification. IEEE Transaction on Components, Hybrids and Manufacturing Technology, 602–212 (1992)

    Google Scholar 

  11. Kleiner, M.B., Kuhn, S.A., Haberger, K.: High performance forced air cooling scheme employing microchannel heat exchangers. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A 20(4), 795–804 (1995)

    Article  Google Scholar 

  12. Fedorov, A.G., Viskanta, R.: Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging. Int. J. Heat Mass Transfer 43, 399–415 (2000)

    Article  MATH  Google Scholar 

  13. Khan, W.A., Kadri, M.B., Ali, Q.: Optimization of microchannel heat sinks using genetic algorithm. Heat Transfer Engineering 34(4), 279–287 (2013)

    Article  Google Scholar 

  14. Tuckerman, D.B., Pease, R.F.: High performance heat sinking for VLSI. IEEE Electron Devices Lett. EDL-2, 126–129 (1981)

    Article  Google Scholar 

  15. Adham, A.M., Mohd-Ghazali, N., Ahmad, R.: Multi-objective Optimization Algorithms for Microchannel Heat Sink Design. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) Contemporary Challenges & Solutions in Applied AI. SCI, vol. 489, pp. 169–174. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. http://www.iiar.org (visited September 19, 2013)

  17. Wen, Z., Choo, F.K.: The optimum thermal design of microchannel heat sinks. In: Proceedings of the 11th IEEE Electronic Packaging Technology Conference, Singapore, pp. 123–129 (1997)

    Google Scholar 

  18. Kim, S.J., Kim, D.: Forced convection in microstructures for electronic equipment cooling. J. Heat Transfer (121), 639–645 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohd-Ghazali, N., Jong-Taek, O., Chien, N.B., Chi, KI., Zolpakar, N.A., Ahmad, R. (2014). Multiobjective Optimization of Microchannels with Experimental Convective Heat Transfer Coefficient of Liquid Ammonia. In: Ali, M., Pan, JS., Chen, SM., Horng, MF. (eds) Modern Advances in Applied Intelligence. IEA/AIE 2014. Lecture Notes in Computer Science(), vol 8481. Springer, Cham. https://doi.org/10.1007/978-3-319-07455-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07455-9_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07454-2

  • Online ISBN: 978-3-319-07455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics