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Abstract. We present an approach for high quality rendering of the
3D representation of a remote collaboration scene, along with real-time
rendering speed, by expanding the unstructured lumigraph rendering
(ULR) method. ULR uses a 3D proxy which is in the simplest case a
2D plane. We develop dynamic proxy for ULR, to get a better and more
detailed 3D proxy in real-time; which leads to the rendering of high-
quality and accurate 3D scenes with motion parallax support. The novel
contribution of this work is the development of a dynamic proxy in real-
time. The dynamic proxy is generated based on depth images instead of
color images as in the Lumigraph approach.

Keywords: 3D reproduction, remote collaboration, telepresence, un-
structured lumigraph rendering, motion parallax.

1 Introduction

Recent advancements in display technology have made a tremendous influence
on the research related to displaying realistic and interactive representation of
a scene. Moreover, because of availability of low-cost color and depth cameras,
systems capable of displaying such 3D representations have become cost effective,
and many applications, such as elearning and remote collaboration, are including
large camera arrays to support 3D visualization of a scene [1][2]. Nowadays, we
see camera arrays consisting of different camera types, on either side of a remote
collaboration setup, for capturing the whole scene [1]. In order to provide an
immersive meeting experience, a remote collaboration system should provide
the users with a real-time reproduction of the collaborating environment and
also a way to interact properly with the distant participants [3].

A number of research projects have been carried out to provide such an in-
teractive 3D representation; our focus is on remote collaboration or telepresence
system, as depicted in Fig. 1. We can see in Fig. 1 that image acquisition is
taking place on the local site of the telepresence system and then transmitted
to the remote site where 3D scene is visualized on the display. Although, the
area of 3D representation of a scene has been explored during the last few years
[4][5][6], high-quality reconstruction and immersive interaction method is still an
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Fig. 1. Illustration of a telepresence system with 3D representation of the scene

open problem. Most of the existing approaches either suffer from slower recon-
struction speed or from visible artifacts on the represented scene. Moreover, the
huge dynamic data, generated from camera arrays, adds additional problem of
data transmission [7].

We present here an approach for high-quality 3D rendering of a remote col-
laboration scene, with real-time rendering speed, by means of expanding the
Unstructured Lumigraph Rendering (ULR) method [8]. In the ULR approach,
the authors use a 3D proxy, which is in the simplest case a 2D plane. A more
complex proxy would be, for example, an arbitrary triangle mesh. In our work,
we develop a dynamic proxy for getting a better and more detailed 3D proxy
in real-time; which leads to a high-quality 3D scene representation. The proxy
in ULR doesn’t get updated when the scene is changed in real-time; our novel
idea of generating dynamic proxies help to remove this obstacle and get updated
in real-time. Like any other proxy, which supports motion parallax, our devel-
oped system with dynamic proxy also supports motion parallax; thus, proper
interaction for the represented scene is obtained. Dynamic proxies also help to
avoid generating huge dynamic data by reducing the number of required cam-
eras. GPU implementation of our idea leads to achieving real-time rendering
of the represented scene. We map the texture from color images on top of the
depth images which are obtained from a set of Microsoft kinects. We also adapt
a recently developed depth camera calibration method [9] for our system. The
rest of the paper is organized as follows: in section 2, we present some related
work for 3D scene representation; in section 3, we present a brief description of
ULR method; section 4 describes details of our system; in section 5, we describe
our system setup and implementation details; in section 6, we present our results
and some existing limitations and finally, in section 7, we conclude our paper.

2 Related Work

Maimone and Fuchs, in [10], present a telepresence system in which the users
can view a 3D representation of the scene captured by a set of kinects placed
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on the remote site. On the basis of per pixel quality assessment, they merge
overlapping depth contributions. Although, the system generates dynamic scene
from arbitrary position, it suffers from lower rendering speed issues when more
enhancement parameters, for removing interference issues, are activated [10].
Researchers also generated such 3D representations by combining textures from
2D video stream on top of the depth information obtained from depth cameras
[1][4]. They obtain 3D representation by projecting the foreground silhouettes
backwards onto 3D plane and refine it by view-dependent depth estimation [5].
Beck et al. presents an immersive telepresence system [11] where a set of kinects
is used to capture the scene. They apply similar 3D reconstruction method as in
[10]. Although, they provide an immersive interaction experience through a com-
plex setup, the visual appearance is not quite satisfactory. Hansung et al. present
a dynamic 3D scene representation approach [5] for outdoor environments.

For producing a 3D representation of a scene, researchers very often use
image-based rendering (IBR) approach rather than traditional three-dimensional
graphics [8]. Gortler et al. present an IBR method, named as Lumigraph [12],
which is capable of reconstructing an accurate ray from a limited number of ac-
quisition cameras. Shum et al. propose an alternate approach [13], which use low
precission depth correction for lower dimensional Lumigraph method. Buehler et
al., in [8], have presented an IBR method, called ULR. We discus briefly about
ULR in the next section.

3 Unstructured Lumigraph Rendering

The ULR algorithm [8] generalizes two IBR approaches – Lumigraph [12] and
View-Dependent Texture Mapping [14]. ULR has three input parameters – a
polygon mesh that represents the scene geometry, an unstructured image set
and camera pose information for each image. The authors refer the polygon
mesh as geometric proxy which is in principle similar to the proxy stated in [15].

In the ULR, a camera blending field determines how each input camera is
weighted to reconstruct a pixel. Each pixel of the reconstructed image is calcu-
lated from the weighted average of the corresponding pixels of the input images
[8]. The blending weight function wang and normalization of blending weights
w̃ang(i) are calculated as in Eq. 1 and Eq. 2.

wang(i) = 1− penaltyang(i)

thresang
(1)

w̃ang(i) =
wang(i)

∑k
j=1 wang(j)

(2)

In Eq. 1, penaltyang(i) is the angular difference between a ray from a virtual
camera (the new viewpoint) and the ray of i-th input camera to the point where
the ray from the virtual camera intersects the proxy. The thresang angle is the
largest penaltyang of the k-nearest cameras.
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4 System Description

Most of the existing telepresence systems, such as the extended window metaphor
(EWM) [7] and [11], suffer from generating huge dynamic data because of us-
ing large number of cameras. We develop a dynamic proxy which combines the
depth images from the depth cameras in addition to the basic idea of the ULR
approach. Since, scene geometry information is used, ULR can reproduce a new
view using few number of input camera images.

However, ULR has its own limitation as well; the proxy in ULR doesn’t update
when the scene is changed in real-time. To resolve this, we develop dynamic proxy
for representing the scene in 3D from a new view-point; thus, it supports depth
images for creating a new depth image out of existing depth images which can
be used as a proxy. Dynamic proxies also help to reduce the processing time
significantly, because they generate arbitrary view-points only for the part of
the scene which is visible from a particular view rather than for the whole scene.

4.1 Dynamic Proxy Generation

The data of the depth cameras should be merged to generate the dynamic proxy;
the dynamic proxy is then used to render the scene from a new point of view. To
generate a dynamic proxy, depth information is first obtained with the Microsoft
kinects; then, the depth values are passed through a median filter for noise
reduction. We choose the median filter in order to preserve the edges of the
objects inside a scene. Then the filtered points of each kinects are transferred to
a common coordinate system. The camera extrinsics, via calibration, must be
known for transferring the 3D points to a common coordinate system.

For each camera, a triangle mesh is generated from the 3D points of that
camera that are transferred to a common coordinate system. For the creation
of the triangles, the neighbor relationships of the 3D points are used for each
camera. For each 3D point, a check is performed whether the immediate-right,
lower-right and bottom neighbors are still present in each case after filtering. If a
3D point does not have at least two neighbors, no triangle is created. When there
are two neighbors, one triangle is created and when there are three neighbors, two
triangles of the 3D point are generated. To remove unwanted triangles between
object edges and object background or foreground object, triangles are removed,
in which the distance between two points is above a threshold.

For each pixel, a ray Ri is cast from the position of the virtual camera V
into the scene. For each ray, the intersection points Sik with the triangle meshes
Tk are calculated, see Fig. 2(a). When a ray has multiple intersections with the
triangle mesh of a camera, only the closest one to the virtual camera is taken.
When a ray has intersection points with the triangle meshes of several cameras,
the depth values of this intersection points are blended through a weighting.
Instead as in the Lumigraph [12], where best color information is searched, here
we look for the best depth information.

The weighting is performed by comparing the angle between the rays of the
cameras to their 3D points and the rays from the virtual camera to these points.
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(a) (b)

Fig. 2. (a) Rays Ri cast from the virtual camera V ; Sik intersection points, Tk triangle
meshes. (b) Weighting the angles WV −Ci between the rays; Ci kinects.

Smaller angle between the ray of a camera and the ray of the virtual camera
indicates a higher weighting for the point from the camera.

The weighting also takes into account that a intersection point of a ray, from
the virtual camera, that lies far behind other intersection points from the ray, is
not used. Because, it is assumed that this point then belongs to another object
or to another side of the same object. The total weight ω is defined as follows:

ω = ρ · θ (3)

ρ = υτ · dτ (4)

In Eq. 3 and Eq. 4, θ, ρ, υτ and dτ refer to the angle, penalty, position threshold
and distance threshold respectively. υτ = 0, if a point lies outside a given scene,
otherwise 1 and dτ = 0, when an intersection point from the view of the virtual
camera is more than a threshold value behind a different intersection from the
same ray. If one of these two variables is 0, the total weight ω is set to 0. θ
is a weight for the angle between a ray of the virtual camera and a ray of a
kinect to a point in the scene (see Fig. 2(b)). θ is calculated and normalized
(see, blending shader in section 5.1) like in Eq. 5. Acceleration techniques must
be applied to calculate the intersection of a ray with a triangle mesh, since it is
computationally very expensive to test the ray with each triangle.

To accelerate the dynamic proxy generation, we use GPU acceleration tech-
nique (see section 5.1). The generated dynamic proxy can then be used for the
ULR. The important point for using the dynamic proxy with the ULR is to inter-
lace the processing of the color cameras in the processing of the depth cameras;
this is required especially for a GPU implementation to get real-time perfor-
mance. Moreover, it is also necessary to calibrate the color cameras with respect
to the depth cameras, or to calibrate all cameras to a specific world coordinate
system. It is also possible to generate a dynamic proxy from the perspective of



356 A.B.M. Tariqul Islam et al.

(a) (b) (c)

Fig. 3. (a) Checkerboard with the rigid body, (b) blurred IR image [9] of kinect, (c)
detected corners that are mapped from the IR image to the depth image [9]

each color camera and then obtain depth information for each color value. This
depth information is very useful when combining multiple color images to a new
image, for example, when occlusions occur within the scene.

4.2 Camera Calibration

There exist a number of works for depth camera calibration; for our proposed
3D scene rendering system, we adapt the work [9], by Avetisyan et al. It uses a
3-D lookup table to support per-pixel and per-distance mapping at every pixel
in the depth image. For finding the intrinsic and extrinsic parameters [9], we
use the standard checkerboard based approach. The calibration method uses a
rigid body attached to the standard planar checkerboard as shown in Fig. 3(a).
During the calibration, the rigid body is being traced by well calibrated 12 DOF
(degrees of freedom) OptiTrack [16] system.

After obtaining the mapping between infrared (IR) and depth images of the
kinects, we transfer the corner coordinates from the IR image into the depth
image [9]. Illustration of the resulting depth images with the detected corners is
shown in Fig. 3(b) and 3(c). This approach doesn’t need any hard mechanical
setup or distance measuring tools. The ground truth values are recorded by
the real-time tracking system and are used for calculating real distances of the
points that are extracted from the checkerboard pattern. Moreover, this approach
supports simultaneous depth correction for multiple kinects.

5 System Setup and Implementation

We use two kinects as depicted in Fig. 4 for capturing the scene. For displaying
the rendered 3D scene, we use a display wall which consists of 24 DELL 2709W
displays; the color cameras are integrated on the bezels of the displays. The
display wall has a combined resolution of 55 Mio pixels. For tracking purpose,
we use the 12 DOF OptiTrack [16] system. We develop the system with C++
and use libfreenect from OpenKinect as camera driver libraries. For this work,
we use a single Macbook Pro, with 2.3 GHz intel i7 processor and NVIDIA
GeForce GT 650M 1024 MB graphics card.
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Fig. 4. Lab setup with kinects, tracking system and display wall

5.1 GPU Implementation

To accelerate the generation of the dynamic proxy, we approach for a GPU imple-
mentation of our method. The implementation is sub-divided into three shader
programs in OpenGL – a filter shader, a rendering shader and a blending shader.
OpenGL version 2.1 and GLSL version 1.2 is used for the implementation. The
illustration of the workflow is depicted in Fig. 5. We can see in Fig. 5 that, after
the scene is captured by the camera set, each camera data goes, at first, to filter
shader, then to render shader and then, they are blended at the blender shader
and finally, the dynamic proxy for the scene is generated. A brief description of
the functionalities of the shaders is given below.

Filter Shader. The filter shader is used for noise reduction in the depth values.
It filters the depth values of the kinects by a 5x5 median filter.

Render Shader. In the render shader, the real point values from the depth
values of the kinects are calculated and transferred to a common coordinate
system. Also the weighting of each point is performed here. The weight ω and
penalty ρ are calculated as in Eq. 3 and Eq. 4; to calculate the angle θ in Eq. 3,
we use the following formula:

θ = cos−1

(

Rk ·Rv

|Rk| · |Rv|
)

· θτπ
2

(5)

In Eq. 5, θτ is the threshold value for angle θ; Rk and Rv are the rays from
the kinects and the virtual camera V respectively. θτ is 0 if θ is bigger than π

2 ,
otherwise 1.
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Fig. 5. Illustration of workflow for GPU implementation

Blending Shader. In the blending shader, the depth values in the textures
from each camera are blended together based on their weights. For each pixel
the weight ωi, calculated like in Eq. 7, for camera i of n cameras is multiplied
with a normalization factor f ; f is calculated as in Eq. 6. The depth values Zi of
the n kinects are blended on the basis of the weights ωi to get final depth Z, as
in Eq. 8. The blended depth values are stored in a final resulting texture which
represents the dynamic proxy.

f =
1

∑n−1
i=0 ωi

(6)

ωi = ωi · f (7)

Z =

n−1
∑

i=0

Ziωi (8)

6 Results

We are able to achieve real-time rendering speed (29.88 fps) by implementing
our idea with the GPU implementation. Table 1 shows the time required for
different sectors of the processing pipeline. From table 1, we can see that, each
image takes 33 ms to process, in which the rendering takes only 4 ms and most
of the time is consumed to transfer camera data from the camera to the system
for processing. Fig. 6 shows the 3D rendering of an object (a bag on a chair)
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from various view-points inside the test scene. Fig. 7 shows the 3D rendering,
via dynamic proxy, of a scene with a person and objects in the test environment.
Fig. 8 shows the 3D rendering of the test environment; on the top row, it shows
a person in different positions, on bottom row, it shows different view-points of
a person sitting behind a desk.

Table 1. Time measurement for 1100 images (1024× 768 res)

Image per sec. 29.88

Time per image 33 ms

Get camera data to
computer

28 ms

Filtering 1 ms

Rendering 4 ms

As a limitation of our system, we observe presence of holes on the represented
3D scene at the intersection of two kinects; this is caused due to the interference
problem of multiple kinect projectors. We plan to solve this issue by capturing
the image stream for kinects on different time domains; by switching the stream
from one kinect to the another very fast. We can also solve this by software
based solutions as described in [10]. Since our focus in this paper is on a faster
and accurate 3D representation of a scene, we overlook the interference issue and
keep it as a future work.

Fig. 6. Top row: depth image (dynamic proxy), middle row: camera weighting (for 2
kinects), bottom row: final output with texture
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Fig. 7. Top row: dynamic proxy (depth image), middle row: camera weighting (for 2
kinects), bottom row: dynamic proxy with texture

Fig. 8. Rendered depth image (dynamic proxy) of the test environment

7 Conclusion

Modern display technology along with availability of cheaper cameras have in-
fluenced remote collaboration systems to incorporate large camera array to cap-
ture and transmit the recorded data, to be represented as 3D scene on display,
to other side of the collaborating environment. Until today, a method providing
both real-time reproduction speed and high visual quality is far from achieving.
We present an approach for high quality rendering of the 3D representation of
a remote collaboration scene along with real-time rendering speed by expanding
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the ULR method. We develop a dynamic proxy for ULR, to get a better and
more detailed 3D proxy in real-time; which leads to a better quality rendering of
the 3D scene. Our system also supports motion parallax for the represented 3D
scene. Although, we observe some holes at the interference point of two kinects,
it can be solved with existing solutions. As a future work, we plan to extend our
method for a networked camera system for generating arbitrary view-points for
multiple users.
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