Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 293))

  • 624 Accesses

Abstract

This paper presents the application of the multiagent paradigm to a distributed model-based predictive control (DMPC) scheme in order to improve its fault tolerance, give it the ability to dynamically adapt its strategy to optimize energy consumption, and to allow it to scale up. This approach is illustrated in the control of a canal simulated using realistic, physics-based 1D models in MatLab. The individual agent behavior, based on DMPC, and the multiagent composition mechanism are described. Presented simulation results illustrate the ability of the proposed control scheme to adapt to a hardware failure and to take global strategies into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malaterre, P.O., Rogers, D.C., Schuurmans, J.: Classification of canal control algorithms. Journal of Irrigation and Drainage Engineering (1998)

    Google Scholar 

  2. Litrico, X., Fromion, V.: Modeling and Control of Hydrosystems - A Frequency Domain Approach. Springer-Verlag (2009)

    Google Scholar 

  3. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica, 789–814 (2000)

    Google Scholar 

  4. Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.A.: State and output feedback nonlinear model predictive control: An overview. Euro. J. of Control 9(3), 179–195 (2003)

    Google Scholar 

  5. Mayne, D.Q., Michalska, H.: Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control 35(7), 814–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Qin, S., Badgwell, T.: An overview of industrial model predictive control technology. In: Kantor, J., Garcia, C., Carnahan, B. (eds.) Fifth International Conference on Chemical Process Control - CPCV, pp. 232–256. American Institute of Chemical Engineers (1996)

    Google Scholar 

  7. Jamont, J.P., Occello, M., Lagréze, A.: A multiagent approach to manage communication in wireless instrumentation systems. Measurement 43(4), 489–503 (2010)

    Article  Google Scholar 

  8. Matei, A.M.: Multi-agent system for monitoring and analysis prahova hydrographical basin. Technical report (2011)

    Google Scholar 

  9. Luo, J., Xu, L., Jamont, J.P., Zeng, L., Shi, Z.: Flood decision support system on agent grid: method and implementation. Enterprise Information Sys. 1(1), 49–68 (2007)

    Article  Google Scholar 

  10. Rendón-Sallard, T., Sànchez-Marrè, M., Aulinas, M., Comas, J.: Designing a multi-agent system to simulate scenarios for decision-making in river basin systems. In: Proc. of the 9th Int. Conf. of the AI R&D, pp. 291–298. IOS Press (2006)

    Google Scholar 

  11. Nabais, J.L., Mendonça, L.F., Botto, M.A.: A multi-agent architecture for diagnosing simultaneous faults along water canals. In: Control Engineering Practice (2013)

    Google Scholar 

  12. van Oel, P.R., Krol, M.S., Hoekstra, A.Y., Taddei, R.R.: Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit mas simulation approach. Environmental Modelling & Software 25(4), 433–443 (2010)

    Article  Google Scholar 

  13. Occello, M., et al.: Designing organized agents for cooperation with real time constaints. In: Drogoul, A., Fukuda, T., Tambe, M. (eds.) CRW 1998. LNCS, vol. 1456, pp. 25–37. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Cohen, G., Zhu, D.L.: Decomposition coordination methods in large scale optimization problems: The nondifferentiable case and the use of augmented lagrangians. Advances in Large Scale Systems 1, 203–266 (1984)

    MathSciNet  Google Scholar 

  15. Cohen, G.: Auxiliary problem principle and decomposition of optimization problems. Journal of Optimization Theory and Application 32(3) (1980)

    Google Scholar 

  16. Pham, V.T., Georges, D., Besançon, G.: Infinite-dimensional predictive control for hyperbolic systems. SIAM J. of Ctrl. and Optimisation (2012)

    Google Scholar 

  17. Scattolini, R.: Architectures for distributed and hierachical model predictive control. Journal for Process Control, 723–731 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Thang Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Thang Pham, V., Raïevsky, C., Jamont, JP. (2014). A Multiagent Approach Using Model-Based Predictive Control for an Irrigation Canal. In: Bajo Perez, J., et al. Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection. Advances in Intelligent Systems and Computing, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-319-07476-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07476-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07475-7

  • Online ISBN: 978-3-319-07476-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics