Skip to main content

Experiments on Stereo Visual Odometry in Feature-Less Volcanic Fields

  • Chapter
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 105))

Abstract

This paper describes a stereo visual odometry system for volcanic fields which lack visual features on the ground. There are several technical problems in untextured terrain including the diversity of terrain appearance, the lack of welltracked features on surfaces, and the limited computational resources of onboard computers. This paper tries to address these problems and enable efficient and accurate visual localization independently of terrain appearance. Several key techniques are presented including a framework for terrain adaptive feature detection and a motion estimation method using fewer feature points. Field experiments have been conducted in volcanic fields for validation and evaluation of the system effectiveness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Arun, K., Huang, T., Blostein, S.: Least-Squares Fitting of Two 3-D Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)

    Article  Google Scholar 

  3. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: Speeded up Robust Features. Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. Cheng, Y., Maimone, M.W., Matthies, L.H.: Visual odometry on the Mars Exploration Rovers. In: IEEE Robotics & Automation Magazine, pp. 54–62 (2006)

    Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, X., Hou, X., Tang, J., Cheng, H.: Complete solution classification for the perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 930–943 (2003)

    Article  Google Scholar 

  9. Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of interest point detectors and feature descriptors for visual tracking. International Journal of Computer Vision 94(3), 335–360 (2011)

    Article  MATH  Google Scholar 

  10. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, UK, vol. 15, pp. 147–151 (1988)

    Google Scholar 

  11. Kalantari, M., Hashemi, A., Jung, F., Guedon, J.P.: A New Solution to the Relative Orientation Problem Using Only 3 Points and the Vertical Direction. Journal of Mathematical Imaging and Vision 39(3), 259–268 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Konolige, K., Agrawal, M., Solà, J.: Large-scale visual odometry for rough terrain. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research. STAR, vol. 66, pp. 201–212. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Naroditsky, O., Zhou, X.S., Gallier, J., Roumeliotis, S.I., Daniilidis, K.: Two efficient solutions for visual odometry using directional correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 818–824 (2012)

    Article  Google Scholar 

  15. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 652–659 (2004)

    Google Scholar 

  16. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. Journal of Field Robotics 23(1), 3–20 (2006)

    Article  MATH  Google Scholar 

  17. Otsu, K., Otsuki, M., Ishigami, G., Kubota, T.: Terrain adaptive detector selection for visual odometry in natural scenes. Advanced Robotics 27(18), 1465–1476 (2013)

    Article  Google Scholar 

  18. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: The 10th IEEE International Conference on Computer Vision, vol. 2, pp. 1508–1515 (2005)

    Google Scholar 

  19. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Saiki, K.: Selection and management of a test site for volcano-observation robots (in Japanese). Journal of the Japanese Society for Planetary Sciences 21(2), 94–102 (2012)

    Google Scholar 

  21. Scaramuzza, D.: Performance evaluation of 1-point-RANSAC visual odometry. Journal of Field Robotics 28(5), 792–811 (2011)

    Article  Google Scholar 

  22. Shi, J., Tomasi, C.: Good features to track. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  23. Sünderhauf, N., Konolige, K., Lacroix, S., Protzel, P.: Visual odometry using sparse bundle adjustment on an autonomous outdoor vehicle. In: Autonome Mobile Systeme, pp. 157–163 (2005)

    Google Scholar 

  24. Tamura, Y., Suzuki, M., Ishii, A., Kuroda, Y.: Visual odometry with effective feature sampling for untextured outdoor environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3492–3497 (2009)

    Google Scholar 

  25. Tomono, M.: Robust 3D SLAM with a stereo camera based on an edge-point ICP algorithm. In: IEEE International Conference on Robotics and Automation, pp. 4306–4311 (2009)

    Google Scholar 

  26. Williams, S., Howard, A.M.: Developing monocular visual pose estimation for arctic environments. Journal of Field Robotics 27(2), 145–157 (2009)

    Google Scholar 

  27. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyohei Otsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otsu, K., Otsuki, M., Kubota, T. (2015). Experiments on Stereo Visual Odometry in Feature-Less Volcanic Fields. In: Mejias, L., Corke, P., Roberts, J. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-07488-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07488-7_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07487-0

  • Online ISBN: 978-3-319-07488-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics